{A sufficient condition for the boundedness of operator-weighted martingale transforms and Hilbert transform
Studia Mathematica, Tome 182 (2007) no. 2, pp. 99-111

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $W$ be an operator weight taking values almost everywhere in the bounded positive invertible linear operators on a separable Hilbert space ${\mathcal H}$. We show that if $W$ and its inverse $W^{-1}$ both satisfy a matrix reverse Hölder property introduced by Christ and Goldberg, then the weighted Hilbert transform $H:L^2_W({\mathbb R}, {\mathcal H}) \rightarrow L^2_W({\mathbb R}, {\mathcal H})$ and also all weighted dyadic martingale transforms $T_\sigma:L^2_W({\mathbb R}, {\mathcal H}) \rightarrow L^2_W({\mathbb R}, {\mathcal H})$ are bounded.We also show that this condition is not necessary for the boundedness of the weighted Hilbert transform.
DOI : 10.4064/sm182-2-1
Keywords: operator weight taking values almost everywhere bounded positive invertible linear operators separable hilbert space mathcal its inverse satisfy matrix reverse lder property introduced christ goldberg weighted hilbert transform mathbb mathcal rightarrow mathbb mathcal weighted dyadic martingale transforms sigma mathbb mathcal rightarrow mathbb mathcal bounded condition necessary boundedness weighted hilbert transform

Sandra Pot 1

1 Department of Mathematics University of Glasgow Glasgow G12 8QW, UK
@article{10_4064_sm182_2_1,
     author = {Sandra Pot},
     title = {{A sufficient condition for the boundedness 
of operator-weighted martingale transforms and {Hilbert} transform},
     journal = {Studia Mathematica},
     pages = {99--111},
     publisher = {mathdoc},
     volume = {182},
     number = {2},
     year = {2007},
     doi = {10.4064/sm182-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-2-1/}
}
TY  - JOUR
AU  - Sandra Pot
TI  - {A sufficient condition for the boundedness 
of operator-weighted martingale transforms and Hilbert transform
JO  - Studia Mathematica
PY  - 2007
SP  - 99
EP  - 111
VL  - 182
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm182-2-1/
DO  - 10.4064/sm182-2-1
LA  - en
ID  - 10_4064_sm182_2_1
ER  - 
%0 Journal Article
%A Sandra Pot
%T {A sufficient condition for the boundedness 
of operator-weighted martingale transforms and Hilbert transform
%J Studia Mathematica
%D 2007
%P 99-111
%V 182
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm182-2-1/
%R 10.4064/sm182-2-1
%G en
%F 10_4064_sm182_2_1
Sandra Pot. {A sufficient condition for the boundedness 
of operator-weighted martingale transforms and Hilbert transform. Studia Mathematica, Tome 182 (2007) no. 2, pp. 99-111. doi: 10.4064/sm182-2-1

Cité par Sources :