On the structure of Banach spaces with an
unconditional basic sequence
Studia Mathematica, Tome 182 (2007) no. 1, pp. 67-85
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a Banach space $X$ with an unconditional basic sequence, one of the following regular-irregular alternatives holds: either $X$ contains a subspace isomorphic to $\ell _2$, or $X$ contains a subspace which has an unconditional finite-dimensional decomposition, but does not admit such a decomposition with a uniform bound for the dimensions of the decomposition. This result can be viewed in the context of Gowers' dichotomy theorem.
Keywords:
banach space unconditional basic sequence following regular irregular alternatives holds either contains subspace isomorphic ell contains subspace which has unconditional finite dimensional decomposition does admit decomposition uniform bound dimensions decomposition result viewed context gowers dichotomy theorem
Affiliations des auteurs :
Razvan Anisca 1
@article{10_4064_sm182_1_4,
author = {Razvan Anisca},
title = {On the structure of {Banach} spaces with an
unconditional basic sequence},
journal = {Studia Mathematica},
pages = {67--85},
publisher = {mathdoc},
volume = {182},
number = {1},
year = {2007},
doi = {10.4064/sm182-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-4/}
}
TY - JOUR AU - Razvan Anisca TI - On the structure of Banach spaces with an unconditional basic sequence JO - Studia Mathematica PY - 2007 SP - 67 EP - 85 VL - 182 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-4/ DO - 10.4064/sm182-1-4 LA - en ID - 10_4064_sm182_1_4 ER -
Razvan Anisca. On the structure of Banach spaces with an unconditional basic sequence. Studia Mathematica, Tome 182 (2007) no. 1, pp. 67-85. doi: 10.4064/sm182-1-4
Cité par Sources :