(I)-envelopes of unit balls and
James' characterization of reflexivity
Studia Mathematica, Tome 182 (2007) no. 1, pp. 29-40
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the (I)-envelopes of the unit balls of Banach spaces. We show, in particular, that any nonreflexive space can be renormed in such a way that the (I)-envelope of the unit ball is not the whole bidual unit ball. Further, we give a simpler proof of James' characterization of reflexivity in the nonseparable case. We also study the spaces in which the (I)-envelope of the unit ball adds nothing.
Keywords:
study envelopes unit balls banach spaces particular nonreflexive space renormed envelope unit ball whole bidual unit ball further simpler proof james characterization reflexivity nonseparable study spaces which envelope unit ball adds nothing
Affiliations des auteurs :
Ondřej F. K. Kalenda 1
@article{10_4064_sm182_1_2,
author = {Ond\v{r}ej F. K. Kalenda},
title = {(I)-envelopes of unit balls and
{James'} characterization of reflexivity},
journal = {Studia Mathematica},
pages = {29--40},
publisher = {mathdoc},
volume = {182},
number = {1},
year = {2007},
doi = {10.4064/sm182-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-2/}
}
TY - JOUR AU - Ondřej F. K. Kalenda TI - (I)-envelopes of unit balls and James' characterization of reflexivity JO - Studia Mathematica PY - 2007 SP - 29 EP - 40 VL - 182 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-2/ DO - 10.4064/sm182-1-2 LA - en ID - 10_4064_sm182_1_2 ER -
Ondřej F. K. Kalenda. (I)-envelopes of unit balls and James' characterization of reflexivity. Studia Mathematica, Tome 182 (2007) no. 1, pp. 29-40. doi: 10.4064/sm182-1-2
Cité par Sources :