(I)-envelopes of unit balls and
James' characterization of reflexivity
Studia Mathematica, Tome 182 (2007) no. 1, pp. 29-40
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the (I)-envelopes of the unit balls of Banach spaces. We show, in particular, that any nonreflexive space can be renormed in such a way that the (I)-envelope of the unit ball is not the whole bidual unit ball. Further, we give a simpler proof of James' characterization of reflexivity in the nonseparable case. We also study the spaces in which the (I)-envelope of the unit ball adds nothing.
Keywords:
study envelopes unit balls banach spaces particular nonreflexive space renormed envelope unit ball whole bidual unit ball further simpler proof james characterization reflexivity nonseparable study spaces which envelope unit ball adds nothing
Affiliations des auteurs :
Ondřej F. K. Kalenda  1
@article{10_4064_sm182_1_2,
author = {Ond\v{r}ej F. K. Kalenda},
title = {(I)-envelopes of unit balls and
{James'} characterization of reflexivity},
journal = {Studia Mathematica},
pages = {29--40},
year = {2007},
volume = {182},
number = {1},
doi = {10.4064/sm182-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm182-1-2/}
}
Ondřej F. K. Kalenda. (I)-envelopes of unit balls and James' characterization of reflexivity. Studia Mathematica, Tome 182 (2007) no. 1, pp. 29-40. doi: 10.4064/sm182-1-2
Cité par Sources :