Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of $\mathbb{R}^n$
Studia Mathematica, Tome 181 (2007) no. 3, pp. 285-296 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A class of subsets of $\mathbb{R}^n$ is constructed that have certain homogeneity and non-coincidence properties with respect to Hausdorff and box dimensions. For each triple $(r,s,t)$ of numbers in the interval $(0,n]$ with $r s t$, a compact set $K$ is constructed so that for any non-empty subset $U$ relatively open in $K$, we have $(\dim_{\rm H}(U), \underline{\dim}_{\rm B}(U), \overline{\dim}_{\rm B}(U))=(r, s, t)$. Moreover, $2^{-n}\leq H^{r}(K)\leq 2n^{{r}/{2}}$.
DOI : 10.4064/sm181-3-5
Keywords: class subsets mathbb constructed have certain homogeneity non coincidence properties respect hausdorff box dimensions each triple numbers interval compact set constructed non empty subset relatively have dim underline dim overline dim moreover n leq leq

Anders Nilsson  1   ; Peter Wingren  1

1 Department of Mathematics and Mathematical Statistics Umeå University 901 87 Umeå, Sweden
@article{10_4064_sm181_3_5,
     author = {Anders Nilsson and Peter Wingren},
     title = {Homogeneity and non-coincidence of {Hausdorff
} and box
dimensions for subsets of $\mathbb{R}^n$},
     journal = {Studia Mathematica},
     pages = {285--296},
     year = {2007},
     volume = {181},
     number = {3},
     doi = {10.4064/sm181-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-3-5/}
}
TY  - JOUR
AU  - Anders Nilsson
AU  - Peter Wingren
TI  - Homogeneity and non-coincidence of Hausdorff
 and box
dimensions for subsets of $\mathbb{R}^n$
JO  - Studia Mathematica
PY  - 2007
SP  - 285
EP  - 296
VL  - 181
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm181-3-5/
DO  - 10.4064/sm181-3-5
LA  - en
ID  - 10_4064_sm181_3_5
ER  - 
%0 Journal Article
%A Anders Nilsson
%A Peter Wingren
%T Homogeneity and non-coincidence of Hausdorff
 and box
dimensions for subsets of $\mathbb{R}^n$
%J Studia Mathematica
%D 2007
%P 285-296
%V 181
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-3-5/
%R 10.4064/sm181-3-5
%G en
%F 10_4064_sm181_3_5
Anders Nilsson; Peter Wingren. Homogeneity and non-coincidence of Hausdorff
 and box
dimensions for subsets of $\mathbb{R}^n$. Studia Mathematica, Tome 181 (2007) no. 3, pp. 285-296. doi: 10.4064/sm181-3-5

Cité par Sources :