1Mathematisch-Geographische Fakultät Universität Eichstätt – Ingolstadt Ostenstr. 26 D-85072 Eichstätt, Germany 2Departamento de Física y Matemática Aplicada Universidad de Navarra E-31080 Pamplona, Spain 3Departamento de Métodos Matemáticos y de Representación Universidad de A Coruña Campus de Elviña E-15071 A Coruña, Spain 4Muskhelishvili Institute of Computational Mathematics Georgian Academy of Sciences Tbilisi 0193, Georgia
Studia Mathematica, Tome 181 (2007) no. 3, pp. 199-210
We introduce a notion of a Schwartz group, which turns out to be coherent with the well known concept of a Schwartz topological vector space. We establish several basic properties of Schwartz groups and show that free topological Abelian groups, as well as free locally convex spaces, over hemicompact $k$-spaces are Schwartz groups. We also prove that every hemicompact $k$-space topological group, in particular the Pontryagin dual of a metrizable topological group, is a Schwartz group.
Keywords:
introduce notion schwartz group which turns out coherent known concept schwartz topological vector space establish several basic properties schwartz groups topological abelian groups locally convex spaces hemicompact k spaces schwartz groups prove every hemicompact k space topological group particular pontryagin dual metrizable topological group schwartz group
Affiliations des auteurs :
L. Außenhofer 
1
;
M. J. Chasco 
2
;
X. Domínguez 
3
;
V. Tarieladze 
4
1
Mathematisch-Geographische Fakultät Universität Eichstätt – Ingolstadt Ostenstr. 26 D-85072 Eichstätt, Germany
2
Departamento de Física y Matemática Aplicada Universidad de Navarra E-31080 Pamplona, Spain
3
Departamento de Métodos Matemáticos y de Representación Universidad de A Coruña Campus de Elviña E-15071 A Coruña, Spain
4
Muskhelishvili Institute of Computational Mathematics Georgian Academy of Sciences Tbilisi 0193, Georgia
@article{10_4064_sm181_3_1,
author = {L. Au{\ss}enhofer and M. J. Chasco and X. Dom{\'\i}nguez and V. Tarieladze},
title = {On {Schwartz} groups},
journal = {Studia Mathematica},
pages = {199--210},
year = {2007},
volume = {181},
number = {3},
doi = {10.4064/sm181-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-3-1/}
}
TY - JOUR
AU - L. Außenhofer
AU - M. J. Chasco
AU - X. Domínguez
AU - V. Tarieladze
TI - On Schwartz groups
JO - Studia Mathematica
PY - 2007
SP - 199
EP - 210
VL - 181
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm181-3-1/
DO - 10.4064/sm181-3-1
LA - en
ID - 10_4064_sm181_3_1
ER -
%0 Journal Article
%A L. Außenhofer
%A M. J. Chasco
%A X. Domínguez
%A V. Tarieladze
%T On Schwartz groups
%J Studia Mathematica
%D 2007
%P 199-210
%V 181
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-3-1/
%R 10.4064/sm181-3-1
%G en
%F 10_4064_sm181_3_1
L. Außenhofer; M. J. Chasco; X. Domínguez; V. Tarieladze. On Schwartz groups. Studia Mathematica, Tome 181 (2007) no. 3, pp. 199-210. doi: 10.4064/sm181-3-1