1Department of Mathematics University of Denver Denver, CO 80208, U.S.A. 2Department of Mathematics The University of California at Irvine Irvine, CA 92697-3875, U.S.A
Studia Mathematica, Tome 181 (2007) no. 2, pp. 181-198
We show that, if a a finite-dimensional operator space $E$ is
such that $X$ contains $E$$C$-completely isomorphically whenever
$X^{**}$ contains $E$ completely isometrically, then $E$ is
$2^{15} C^{11}$-completely isomorphic to $\mathbf{R}_m \oplus \mathbf{C}_n$ for
some $n, m \in \mathbb N \cup \{0\}$. The converse is also true: if $X^{**}$
contains $\mathbf{R}_m \oplus \mathbf{C}_n$$\lambda$-completely isomorphically,
then $X$ contains $\mathbf{R}_m \oplus \mathbf{C}_n$$(2\lambda+\varepsilon)$-completely
isomorphically for any $\varepsilon > 0$.
1
Department of Mathematics University of Denver Denver, CO 80208, U.S.A.
2
Department of Mathematics The University of California at Irvine Irvine, CA 92697-3875, U.S.A
@article{10_4064_sm181_2_5,
author = {Alvaro Arias and Timur Oikhberg},
title = {Embeddings of finite-dimensional operator spaces
into the second dual},
journal = {Studia Mathematica},
pages = {181--198},
year = {2007},
volume = {181},
number = {2},
doi = {10.4064/sm181-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/}
}
TY - JOUR
AU - Alvaro Arias
AU - Timur Oikhberg
TI - Embeddings of finite-dimensional operator spaces
into the second dual
JO - Studia Mathematica
PY - 2007
SP - 181
EP - 198
VL - 181
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/
DO - 10.4064/sm181-2-5
LA - en
ID - 10_4064_sm181_2_5
ER -
%0 Journal Article
%A Alvaro Arias
%A Timur Oikhberg
%T Embeddings of finite-dimensional operator spaces
into the second dual
%J Studia Mathematica
%D 2007
%P 181-198
%V 181
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/
%R 10.4064/sm181-2-5
%G en
%F 10_4064_sm181_2_5
Alvaro Arias; Timur Oikhberg. Embeddings of finite-dimensional operator spaces
into the second dual. Studia Mathematica, Tome 181 (2007) no. 2, pp. 181-198. doi: 10.4064/sm181-2-5