Embeddings of finite-dimensional operator spaces
into the second dual
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 181 (2007) no. 2, pp. 181-198
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We show that, if a a finite-dimensional operator space $E$ is
such that $X$ contains $E$ $C$-completely isomorphically whenever
$X^{**}$ contains $E$ completely isometrically, then $E$ is
$2^{15} C^{11}$-completely isomorphic to $\mathbf{R}_m \oplus \mathbf{C}_n$ for
some $n, m \in \mathbb N \cup \{0\}$. The converse is also true: if $X^{**}$
contains $\mathbf{R}_m \oplus \mathbf{C}_n$ $\lambda$-completely isomorphically,
then $X$ contains $\mathbf{R}_m \oplus \mathbf{C}_n$ 
$(2\lambda+\varepsilon)$-completely
isomorphically for any $\varepsilon > 0$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
finite dimensional operator space contains c completely isomorphically whenever ** contains completely isometrically completely isomorphic mathbf oplus mathbf mathbb cup converse ** contains mathbf oplus mathbf lambda completely isomorphically contains mathbf oplus mathbf lambda varepsilon completely isomorphically varepsilon
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Alvaro Arias 1 ; Timur Oikhberg 2
@article{10_4064_sm181_2_5,
     author = {Alvaro Arias and Timur Oikhberg},
     title = {Embeddings of finite-dimensional operator spaces
into the second dual},
     journal = {Studia Mathematica},
     pages = {181--198},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2007},
     doi = {10.4064/sm181-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/}
}
                      
                      
                    TY - JOUR AU - Alvaro Arias AU - Timur Oikhberg TI - Embeddings of finite-dimensional operator spaces into the second dual JO - Studia Mathematica PY - 2007 SP - 181 EP - 198 VL - 181 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/ DO - 10.4064/sm181-2-5 LA - en ID - 10_4064_sm181_2_5 ER -
Alvaro Arias; Timur Oikhberg. Embeddings of finite-dimensional operator spaces into the second dual. Studia Mathematica, Tome 181 (2007) no. 2, pp. 181-198. doi: 10.4064/sm181-2-5
Cité par Sources :
