Embeddings of finite-dimensional operator spaces into the second dual
Studia Mathematica, Tome 181 (2007) no. 2, pp. 181-198

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that, if a a finite-dimensional operator space $E$ is such that $X$ contains $E$ $C$-completely isomorphically whenever $X^{**}$ contains $E$ completely isometrically, then $E$ is $2^{15} C^{11}$-completely isomorphic to $\mathbf{R}_m \oplus \mathbf{C}_n$ for some $n, m \in \mathbb N \cup \{0\}$. The converse is also true: if $X^{**}$ contains $\mathbf{R}_m \oplus \mathbf{C}_n$ $\lambda$-completely isomorphically, then $X$ contains $\mathbf{R}_m \oplus \mathbf{C}_n$ $(2\lambda+\varepsilon)$-completely isomorphically for any $\varepsilon > 0$.
DOI : 10.4064/sm181-2-5
Keywords: finite dimensional operator space contains c completely isomorphically whenever ** contains completely isometrically completely isomorphic mathbf oplus mathbf mathbb cup converse ** contains mathbf oplus mathbf lambda completely isomorphically contains mathbf oplus mathbf lambda varepsilon completely isomorphically varepsilon

Alvaro Arias 1 ; Timur Oikhberg 2

1 Department of Mathematics University of Denver Denver, CO 80208, U.S.A.
2 Department of Mathematics The University of California at Irvine Irvine, CA 92697-3875, U.S.A
@article{10_4064_sm181_2_5,
     author = {Alvaro Arias and Timur Oikhberg},
     title = {Embeddings of finite-dimensional operator spaces
into the second dual},
     journal = {Studia Mathematica},
     pages = {181--198},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2007},
     doi = {10.4064/sm181-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/}
}
TY  - JOUR
AU  - Alvaro Arias
AU  - Timur Oikhberg
TI  - Embeddings of finite-dimensional operator spaces
into the second dual
JO  - Studia Mathematica
PY  - 2007
SP  - 181
EP  - 198
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/
DO  - 10.4064/sm181-2-5
LA  - en
ID  - 10_4064_sm181_2_5
ER  - 
%0 Journal Article
%A Alvaro Arias
%A Timur Oikhberg
%T Embeddings of finite-dimensional operator spaces
into the second dual
%J Studia Mathematica
%D 2007
%P 181-198
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-5/
%R 10.4064/sm181-2-5
%G en
%F 10_4064_sm181_2_5
Alvaro Arias; Timur Oikhberg. Embeddings of finite-dimensional operator spaces
into the second dual. Studia Mathematica, Tome 181 (2007) no. 2, pp. 181-198. doi: 10.4064/sm181-2-5

Cité par Sources :