1Departamento de Matemáticas Facultad de Ciencias Experimentales Campus Universitario del Carmen Avda. de las Fuerzas Armadas s//n E-21071 Huelva, Spain
Studia Mathematica, Tome 181 (2007) no. 2, pp. 171-180
Let $X$ and $Y$ be Banach spaces. A subset ${\rm M}$ of
${\cal K}(X,Y)$ (the vector space of all compact operators from $X$ into
$Y$ endowed with the operator norm) is said to be equicompact
if every bounded sequence $(x_n)$ in $X$ has a subsequence
$(x_{k(n)})_n$ such that $(Tx_{k(n)})_n$ is uniformly convergent
for $T\in{\rm M}$. We study the relationship between this concept
and the notion of uniformly completely continuous set and give
some applications. Among other results, we obtain a generalization of the
classical Ascoli theorem and a compactness criterion
in ${\cal M}_{\rm c}({\cal F},X)$, the Banach space of all (finitely additive)
vector measures (with compact range) from a field
${\cal F}$ of sets into $X$ endowed with the semivariation norm.
Keywords:
banach spaces subset cal vector space compact operators endowed operator norm said equicompact every bounded sequence has subsequence uniformly convergent study relationship between concept notion uniformly completely continuous set applications among other results obtain generalization classical ascoli theorem compactness criterion cal cal banach space finitely additive vector measures compact range field cal sets endowed semivariation norm
Affiliations des auteurs :
E. Serrano 
1
;
C. Piñeiro 
1
;
J. M. Delgado 
1
1
Departamento de Matemáticas Facultad de Ciencias Experimentales Campus Universitario del Carmen Avda. de las Fuerzas Armadas s//n E-21071 Huelva, Spain
@article{10_4064_sm181_2_4,
author = {E. Serrano and C. Pi\~neiro and J. M. Delgado},
title = {Some properties and applications of equicompact sets of operators},
journal = {Studia Mathematica},
pages = {171--180},
year = {2007},
volume = {181},
number = {2},
doi = {10.4064/sm181-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-4/}
}
TY - JOUR
AU - E. Serrano
AU - C. Piñeiro
AU - J. M. Delgado
TI - Some properties and applications of equicompact sets of operators
JO - Studia Mathematica
PY - 2007
SP - 171
EP - 180
VL - 181
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-4/
DO - 10.4064/sm181-2-4
LA - en
ID - 10_4064_sm181_2_4
ER -
%0 Journal Article
%A E. Serrano
%A C. Piñeiro
%A J. M. Delgado
%T Some properties and applications of equicompact sets of operators
%J Studia Mathematica
%D 2007
%P 171-180
%V 181
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-2-4/
%R 10.4064/sm181-2-4
%G en
%F 10_4064_sm181_2_4
E. Serrano; C. Piñeiro; J. M. Delgado. Some properties and applications of equicompact sets of operators. Studia Mathematica, Tome 181 (2007) no. 2, pp. 171-180. doi: 10.4064/sm181-2-4