A complete characterization of
$R$-sets in the theory of differentiation of integrals
Studia Mathematica, Tome 181 (2007) no. 1, pp. 17-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathcal R}_s$ be the family of open rectangles in the plane $\mathbb{R}^2$ with a side of angle
$s$ to the $x$-axis. We say that a set $S$ of directions is
an $R$-set if there exists a function $f\in L^1(\mathbb{R}^2)$
such that the
basis ${\mathcal R}_s$ differentiates
the
integral of $f$ if $s\not\in S $, and
$
\overline D_sf(x)=\limsup_{\mathop{\rm diam}\nolimits(R)\to 0,\, x\in R\in{\mathcal R}_s}
|R|^{-1}\int_R f=\infty
$
almost everywhere if $s\in S$. If
the condition $\overline D_s f(x)=\infty $ holds on a set of
positive measure (instead of a.e.) we say that $S$ is a $WR$-set. It
is proved that $S $ is an $R$-set (resp. a $WR$-set) if and only if it
is a
$G_\delta $ (resp. a $G_{\delta\sigma}$).
Keywords:
mathcal family rectangles plane mathbb side angle x axis say set directions r set there exists function mathbb basis mathcal differentiates integral overline limsup mathop diam nolimits mathcal int infty almost everywhere condition overline x infty holds set positive measure instead say wr set proved r set resp wr set only delta resp delta sigma
Affiliations des auteurs :
G. A. Karagulyan 1
@article{10_4064_sm181_1_2,
author = {G. A. Karagulyan},
title = {A complete characterization of
$R$-sets in the theory of differentiation of integrals},
journal = {Studia Mathematica},
pages = {17--32},
publisher = {mathdoc},
volume = {181},
number = {1},
year = {2007},
doi = {10.4064/sm181-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-2/}
}
TY - JOUR AU - G. A. Karagulyan TI - A complete characterization of $R$-sets in the theory of differentiation of integrals JO - Studia Mathematica PY - 2007 SP - 17 EP - 32 VL - 181 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-2/ DO - 10.4064/sm181-1-2 LA - en ID - 10_4064_sm181_1_2 ER -
G. A. Karagulyan. A complete characterization of $R$-sets in the theory of differentiation of integrals. Studia Mathematica, Tome 181 (2007) no. 1, pp. 17-32. doi: 10.4064/sm181-1-2
Cité par Sources :