A complete characterization of $R$-sets in the theory of differentiation of integrals
Studia Mathematica, Tome 181 (2007) no. 1, pp. 17-32

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mathcal R}_s$ be the family of open rectangles in the plane $\mathbb{R}^2$ with a side of angle $s$ to the $x$-axis. We say that a set $S$ of directions is an $R$-set if there exists a function $f\in L^1(\mathbb{R}^2)$ such that the basis ${\mathcal R}_s$ differentiates the integral of $f$ if $s\not\in S $, and $ \overline D_sf(x)=\limsup_{\mathop{\rm diam}\nolimits(R)\to 0,\, x\in R\in{\mathcal R}_s} |R|^{-1}\int_R f=\infty $ almost everywhere if $s\in S$. If the condition $\overline D_s f(x)=\infty $ holds on a set of positive measure (instead of a.e.) we say that $S$ is a $WR$-set. It is proved that $S $ is an $R$-set (resp. a $WR$-set) if and only if it is a $G_\delta $ (resp. a $G_{\delta\sigma}$).
DOI : 10.4064/sm181-1-2
Keywords: mathcal family rectangles plane mathbb side angle x axis say set directions r set there exists function mathbb basis mathcal differentiates integral overline limsup mathop diam nolimits mathcal int infty almost everywhere condition overline x infty holds set positive measure instead say wr set proved r set resp wr set only delta resp delta sigma

G. A. Karagulyan 1

1 Department of Computer Science Yerevan State University and Institute of Mathematics Armenian National Academy of Sciences Marshal Baghramian ave. 24b Yerevan, 375019, Armenia
@article{10_4064_sm181_1_2,
     author = {G. A. Karagulyan},
     title = {A complete characterization of 
$R$-sets in the theory of differentiation of integrals},
     journal = {Studia Mathematica},
     pages = {17--32},
     publisher = {mathdoc},
     volume = {181},
     number = {1},
     year = {2007},
     doi = {10.4064/sm181-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-2/}
}
TY  - JOUR
AU  - G. A. Karagulyan
TI  - A complete characterization of 
$R$-sets in the theory of differentiation of integrals
JO  - Studia Mathematica
PY  - 2007
SP  - 17
EP  - 32
VL  - 181
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-2/
DO  - 10.4064/sm181-1-2
LA  - en
ID  - 10_4064_sm181_1_2
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%T A complete characterization of 
$R$-sets in the theory of differentiation of integrals
%J Studia Mathematica
%D 2007
%P 17-32
%V 181
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm181-1-2/
%R 10.4064/sm181-1-2
%G en
%F 10_4064_sm181_1_2
G. A. Karagulyan. A complete characterization of 
$R$-sets in the theory of differentiation of integrals. Studia Mathematica, Tome 181 (2007) no. 1, pp. 17-32. doi: 10.4064/sm181-1-2

Cité par Sources :