1IBM T.J. Watson Research Center 19 Skyline Dr. Hawthorne, NY 10532, U.S.A. 2Department of Mathematics Applied Mathematics and Astronomy University of South Africa Pretoria 0003, South Africa
Studia Mathematica, Tome 180 (2007) no. 3, pp. 255-270
The classical Banach principle is an essential tool for the investigation of ergodic properties of Cesàro subsequences. The aim of this work is to extend the Banach principle to the case of stochastic convergence in operator algebras. We start by establishing a sufficient condition for stochastic convergence (stochastic Banach principle). Then we prove stochastic convergence for bounded Besicovitch sequences, and as a consequence for uniform subsequences.
Genady Ya. Grabarnik 
1
;
Laura Shwartz 
2
1
IBM T.J. Watson Research Center 19 Skyline Dr. Hawthorne, NY 10532, U.S.A.
2
Department of Mathematics Applied Mathematics and Astronomy University of South Africa Pretoria 0003, South Africa
@article{10_4064_sm180_3_5,
author = {Genady Ya. Grabarnik and Laura Shwartz},
title = {Stochastic {Banach} principle in operator algebras},
journal = {Studia Mathematica},
pages = {255--270},
year = {2007},
volume = {180},
number = {3},
doi = {10.4064/sm180-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-5/}
}
TY - JOUR
AU - Genady Ya. Grabarnik
AU - Laura Shwartz
TI - Stochastic Banach principle in operator algebras
JO - Studia Mathematica
PY - 2007
SP - 255
EP - 270
VL - 180
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-5/
DO - 10.4064/sm180-3-5
LA - en
ID - 10_4064_sm180_3_5
ER -
%0 Journal Article
%A Genady Ya. Grabarnik
%A Laura Shwartz
%T Stochastic Banach principle in operator algebras
%J Studia Mathematica
%D 2007
%P 255-270
%V 180
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-5/
%R 10.4064/sm180-3-5
%G en
%F 10_4064_sm180_3_5
Genady Ya. Grabarnik; Laura Shwartz. Stochastic Banach principle in operator algebras. Studia Mathematica, Tome 180 (2007) no. 3, pp. 255-270. doi: 10.4064/sm180-3-5