Coorbit space theory for quasi-Banach spaces
Studia Mathematica, Tome 180 (2007) no. 3, pp. 237-253
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best $n$-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces $M^{p,q}_m$, $0 p,q \leq \infty $.
Keywords:
generalize classical coorbit space theory developed feichtinger chenig quasi banach spaces main result provide atomic decompositions coorbit spaces defined respect quasi banach spaces these atomic decompositions prove fast convergence rates best n term approximation schemes apply abstract theory time frequency analysis modulation spaces leq infty
Affiliations des auteurs :
Holger Rauhut 1
@article{10_4064_sm180_3_4,
author = {Holger Rauhut},
title = {Coorbit space theory for {quasi-Banach} spaces},
journal = {Studia Mathematica},
pages = {237--253},
publisher = {mathdoc},
volume = {180},
number = {3},
year = {2007},
doi = {10.4064/sm180-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-4/}
}
Holger Rauhut. Coorbit space theory for quasi-Banach spaces. Studia Mathematica, Tome 180 (2007) no. 3, pp. 237-253. doi: 10.4064/sm180-3-4
Cité par Sources :