Hypercontractivity of simple random variables
Studia Mathematica, Tome 180 (2007) no. 3, pp. 219-236
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The optimal hypercontractivity constant for a natural operator semigroup acting on a discrete finite probability space is established up to a universal factor. The two-point spaces are proved to be the extremal case. The constants obtained are also optimal in the related moment inequalities for sums of independent random variables.
Keywords:
optimal hypercontractivity constant natural operator semigroup acting discrete finite probability space established universal factor two point spaces proved extremal constants obtained optimal related moment inequalities sums independent random variables
Affiliations des auteurs :
Paweł Wolff 1
@article{10_4064_sm180_3_3,
author = {Pawe{\l} Wolff},
title = {Hypercontractivity of simple random variables},
journal = {Studia Mathematica},
pages = {219--236},
publisher = {mathdoc},
volume = {180},
number = {3},
year = {2007},
doi = {10.4064/sm180-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-3-3/}
}
Paweł Wolff. Hypercontractivity of simple random variables. Studia Mathematica, Tome 180 (2007) no. 3, pp. 219-236. doi: 10.4064/sm180-3-3
Cité par Sources :