Generalization of results about the Bohr radius for power series
Studia Mathematica, Tome 180 (2007) no. 2, pp. 161-168

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Bohr radius for power series of holomorphic functions mapping Reinhardt domains ${\mathcal D}\subset \mathbb{C}^n$ into a convex domain $G\subset \mathbb{C}$ is independent of the domain $G.$
DOI : 10.4064/sm180-2-5
Keywords: bohr radius power series holomorphic functions mapping reinhardt domains mathcal subset mathbb convex domain subset mathbb independent domain nbsp

Lev Aizenberg 1

1 Department of Mathematics Bar-Ilan University 52900 Ramat-Gan, Israel
@article{10_4064_sm180_2_5,
     author = {Lev Aizenberg},
     title = {Generalization of results about the {Bohr
radius} for power series},
     journal = {Studia Mathematica},
     pages = {161--168},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2007},
     doi = {10.4064/sm180-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-5/}
}
TY  - JOUR
AU  - Lev Aizenberg
TI  - Generalization of results about the Bohr
radius for power series
JO  - Studia Mathematica
PY  - 2007
SP  - 161
EP  - 168
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-5/
DO  - 10.4064/sm180-2-5
LA  - en
ID  - 10_4064_sm180_2_5
ER  - 
%0 Journal Article
%A Lev Aizenberg
%T Generalization of results about the Bohr
radius for power series
%J Studia Mathematica
%D 2007
%P 161-168
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-5/
%R 10.4064/sm180-2-5
%G en
%F 10_4064_sm180_2_5
Lev Aizenberg. Generalization of results about the Bohr
radius for power series. Studia Mathematica, Tome 180 (2007) no. 2, pp. 161-168. doi: 10.4064/sm180-2-5

Cité par Sources :