Generalization of results about the Bohr
radius for power series
Studia Mathematica, Tome 180 (2007) no. 2, pp. 161-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Bohr radius for power series of holomorphic
functions mapping
Reinhardt domains ${\mathcal D}\subset \mathbb{C}^n$
into a convex domain $G\subset \mathbb{C}$ is independent
of the domain $G.$
Keywords:
bohr radius power series holomorphic functions mapping reinhardt domains mathcal subset mathbb convex domain subset mathbb independent domain nbsp
Affiliations des auteurs :
Lev Aizenberg 1
@article{10_4064_sm180_2_5,
author = {Lev Aizenberg},
title = {Generalization of results about the {Bohr
radius} for power series},
journal = {Studia Mathematica},
pages = {161--168},
publisher = {mathdoc},
volume = {180},
number = {2},
year = {2007},
doi = {10.4064/sm180-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-5/}
}
Lev Aizenberg. Generalization of results about the Bohr radius for power series. Studia Mathematica, Tome 180 (2007) no. 2, pp. 161-168. doi: 10.4064/sm180-2-5
Cité par Sources :