Moduli of smoothness of functions and their derivatives
Studia Mathematica, Tome 180 (2007) no. 2, pp. 143-160

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for $L_p(T)$ and $L_p[-1,1]$ for $0 p \infty $ using the moduli of smoothness $\omega ^r(f,t)_p$ and $\omega ^r_\varphi (f,t)_p$ respectively.
DOI : 10.4064/sm180-2-4
Keywords: relations between moduli smoothness derivatives function those function itself investigated results infty using moduli smoothness omega omega varphi respectively

Z. Ditzian 1 ; S. Tikhonov 2

1 Department of Mathematical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1
2 Scuola Normale Superiore Piazza dei Cavalieri, 7 Pisa 56126, Italy
@article{10_4064_sm180_2_4,
     author = {Z. Ditzian and S. Tikhonov},
     title = {Moduli of smoothness of functions and their derivatives},
     journal = {Studia Mathematica},
     pages = {143--160},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2007},
     doi = {10.4064/sm180-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/}
}
TY  - JOUR
AU  - Z. Ditzian
AU  - S. Tikhonov
TI  - Moduli of smoothness of functions and their derivatives
JO  - Studia Mathematica
PY  - 2007
SP  - 143
EP  - 160
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/
DO  - 10.4064/sm180-2-4
LA  - en
ID  - 10_4064_sm180_2_4
ER  - 
%0 Journal Article
%A Z. Ditzian
%A S. Tikhonov
%T Moduli of smoothness of functions and their derivatives
%J Studia Mathematica
%D 2007
%P 143-160
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/
%R 10.4064/sm180-2-4
%G en
%F 10_4064_sm180_2_4
Z. Ditzian; S. Tikhonov. Moduli of smoothness of functions and their derivatives. Studia Mathematica, Tome 180 (2007) no. 2, pp. 143-160. doi: 10.4064/sm180-2-4

Cité par Sources :