Moduli of smoothness of functions and their derivatives
Studia Mathematica, Tome 180 (2007) no. 2, pp. 143-160
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for $L_p(T)$ and $L_p[-1,1]$ for $0 p \infty $ using the moduli of smoothness $\omega ^r(f,t)_p$ and $\omega ^r_\varphi (f,t)_p$ respectively.
Keywords:
relations between moduli smoothness derivatives function those function itself investigated results infty using moduli smoothness omega omega varphi respectively
Affiliations des auteurs :
Z. Ditzian 1 ; S. Tikhonov 2
@article{10_4064_sm180_2_4,
author = {Z. Ditzian and S. Tikhonov},
title = {Moduli of smoothness of functions and their derivatives},
journal = {Studia Mathematica},
pages = {143--160},
publisher = {mathdoc},
volume = {180},
number = {2},
year = {2007},
doi = {10.4064/sm180-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/}
}
TY - JOUR AU - Z. Ditzian AU - S. Tikhonov TI - Moduli of smoothness of functions and their derivatives JO - Studia Mathematica PY - 2007 SP - 143 EP - 160 VL - 180 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/ DO - 10.4064/sm180-2-4 LA - en ID - 10_4064_sm180_2_4 ER -
Z. Ditzian; S. Tikhonov. Moduli of smoothness of functions and their derivatives. Studia Mathematica, Tome 180 (2007) no. 2, pp. 143-160. doi: 10.4064/sm180-2-4
Cité par Sources :