1Department of Mathematical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1 2Scuola Normale Superiore Piazza dei Cavalieri, 7 Pisa 56126, Italy
Studia Mathematica, Tome 180 (2007) no. 2, pp. 143-160
Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for $L_p(T)$ and $L_p[-1,1]$ for $0 p \infty $ using the moduli of smoothness $\omega ^r(f,t)_p$ and $\omega ^r_\varphi (f,t)_p$ respectively.
Keywords:
relations between moduli smoothness derivatives function those function itself investigated results infty using moduli smoothness omega omega varphi respectively
Affiliations des auteurs :
Z. Ditzian 
1
;
S. Tikhonov 
2
1
Department of Mathematical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1
2
Scuola Normale Superiore Piazza dei Cavalieri, 7 Pisa 56126, Italy
@article{10_4064_sm180_2_4,
author = {Z. Ditzian and S. Tikhonov},
title = {Moduli of smoothness of functions and their derivatives},
journal = {Studia Mathematica},
pages = {143--160},
year = {2007},
volume = {180},
number = {2},
doi = {10.4064/sm180-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/}
}
TY - JOUR
AU - Z. Ditzian
AU - S. Tikhonov
TI - Moduli of smoothness of functions and their derivatives
JO - Studia Mathematica
PY - 2007
SP - 143
EP - 160
VL - 180
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/
DO - 10.4064/sm180-2-4
LA - en
ID - 10_4064_sm180_2_4
ER -
%0 Journal Article
%A Z. Ditzian
%A S. Tikhonov
%T Moduli of smoothness of functions and their derivatives
%J Studia Mathematica
%D 2007
%P 143-160
%V 180
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-4/
%R 10.4064/sm180-2-4
%G en
%F 10_4064_sm180_2_4
Z. Ditzian; S. Tikhonov. Moduli of smoothness of functions and their derivatives. Studia Mathematica, Tome 180 (2007) no. 2, pp. 143-160. doi: 10.4064/sm180-2-4