Common zero sets of equivalent singular inner functions II
Studia Mathematica, Tome 180 (2007) no. 2, pp. 133-142

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study connected components of a common zero set of equivalent singular inner functions in the maximal ideal space of the Banach algebra of bounded analytic functions on the open unit disk. To study topological properties of zero sets of inner functions, we give a new type of factorization theorem for inner functions.
DOI : 10.4064/sm180-2-3
Keywords: study connected components common zero set equivalent singular inner functions maximal ideal space banach algebra bounded analytic functions unit disk study topological properties zero sets inner functions type factorization theorem inner functions

Keiji Izuchi 1

1 Department of Mathematics Niigata University Niigata 950-2181, Japan
@article{10_4064_sm180_2_3,
     author = {Keiji Izuchi},
     title = {Common zero sets of equivalent singular inner functions {II}},
     journal = {Studia Mathematica},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2007},
     doi = {10.4064/sm180-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-3/}
}
TY  - JOUR
AU  - Keiji Izuchi
TI  - Common zero sets of equivalent singular inner functions II
JO  - Studia Mathematica
PY  - 2007
SP  - 133
EP  - 142
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-3/
DO  - 10.4064/sm180-2-3
LA  - en
ID  - 10_4064_sm180_2_3
ER  - 
%0 Journal Article
%A Keiji Izuchi
%T Common zero sets of equivalent singular inner functions II
%J Studia Mathematica
%D 2007
%P 133-142
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm180-2-3/
%R 10.4064/sm180-2-3
%G en
%F 10_4064_sm180_2_3
Keiji Izuchi. Common zero sets of equivalent singular inner functions II. Studia Mathematica, Tome 180 (2007) no. 2, pp. 133-142. doi: 10.4064/sm180-2-3

Cité par Sources :