On the derived tensor product functors for
(DF)- and Fréchet spaces
Studia Mathematica, Tome 180 (2007) no. 1, pp. 41-71
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a (DF)-space $E$ and a tensor norm $\alpha$ we investigate the
derivatives $\mathop{\rm Tor}^l_\alpha(E,\cdot)$ of the tensor product functor
$E \mathbin{\widetilde{\otimes} _\alpha}{\cdot} :\mathcal{FS}\to
\mathcal{LS}$ from the category of
Fréchet spaces to the category of linear spaces. Necessary and
sufficient conditions for the vanishing of $\mathop{\rm Tor}^1_\alpha(E,F)$, which is
strongly related to the exactness of tensored sequences, are presented and
characterizations in the nuclear and (co-)echelon cases are given.
Keywords:
space tensor norm alpha investigate derivatives mathop tor alpha cdot tensor product functor mathbin widetilde otimes alpha cdot mathcal mathcal category chet spaces category linear spaces necessary sufficient conditions vanishing mathop tor alpha which strongly related exactness tensored sequences presented characterizations nuclear co echelon cases given
Affiliations des auteurs :
Oğuz Varol 1
@article{10_4064_sm180_1_4,
author = {O\u{g}uz Varol},
title = {On the derived tensor product functors for
{(DF)-} and {Fr\'echet} spaces},
journal = {Studia Mathematica},
pages = {41--71},
year = {2007},
volume = {180},
number = {1},
doi = {10.4064/sm180-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-1-4/}
}
Oğuz Varol. On the derived tensor product functors for (DF)- and Fréchet spaces. Studia Mathematica, Tome 180 (2007) no. 1, pp. 41-71. doi: 10.4064/sm180-1-4
Cité par Sources :