A note on extensions of Pełczyński's decomposition
 method in Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 180 (2007) no. 1, pp. 27-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $X,Y,A$ and $B$ be Banach spaces such
that $X$ is isomorphic to 
$Y\oplus A$ and $Y$ is isomorphic to $X\oplus B$. In 1996,  W. T.
Gowers solved the Schroeder–Bernstein problem for Banach spaces by
showing that $X$ is not necessarily isomorphic to $Y$. In the present paper, 
we  give a  necessary and sufficient condition on  sextuples
$(p, q, r, s, u, v)$ in ${\mathbb N}$ with $p+q \geq 2$, $r+s \geq 1$ 
and $u, v \in {\mathbb N}^*$  for $X$ to be isomorphic to $Y$
whenever these spaces satisfy the following decomposition scheme:
$$\left \{\eqalign{
^u \sim X^p \oplus Y^q, \cr
^v \sim A^r \oplus B^s.\cr
}
\right.$$ 
Namely, ${\mit\Omega}=(p-u)(s-r-v)-q(r-s)$ is different from zero
 and ${\mit\Omega}$ divides $p+q-u$ and $v$. In other words, we obtain an arithmetic characterization of some extensions of the classical Pełczyński
 decomposition method in Banach spaces. This result leads naturally
 to several problems  closely related to the Schroeder–Bernstein problem. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Mots-clés : 
banach spaces isomorphic oplus isomorphic oplus gowers solved schroeder bernstein problem banach spaces showing necessarily isomorphic present paper necessary sufficient condition sextuples nbsp mathbb geq geq mathbb * isomorphic whenever these spaces satisfy following decomposition scheme eqalign sim oplus sim oplus right namely mit omega p u s r v q r s different zero mit omega divides q u other words obtain arithmetic characterization extensions classical czy ski decomposition method banach spaces result leads naturally several problems closely related schroeder bernstein problem
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Elói Medina Galego 1
@article{10_4064_sm180_1_3,
     author = {El\'oi Medina Galego},
     title = {A note on extensions of {Pe{\l}czy\'nski's} decomposition
 method in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {180},
     number = {1},
     year = {2007},
     doi = {10.4064/sm180-1-3},
     language = {pl},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-1-3/}
}
                      
                      
                    TY - JOUR AU - Elói Medina Galego TI - A note on extensions of Pełczyński's decomposition method in Banach spaces JO - Studia Mathematica PY - 2007 SP - 27 EP - 40 VL - 180 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm180-1-3/ DO - 10.4064/sm180-1-3 LA - pl ID - 10_4064_sm180_1_3 ER -
Elói Medina Galego. A note on extensions of Pełczyński's decomposition method in Banach spaces. Studia Mathematica, Tome 180 (2007) no. 1, pp. 27-40. doi: 10.4064/sm180-1-3
Cité par Sources :
