A note on extensions of Pełczyński's decomposition
method in Banach spaces
Studia Mathematica, Tome 180 (2007) no. 1, pp. 27-40
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X,Y,A$ and $B$ be Banach spaces such
that $X$ is isomorphic to
$Y\oplus A$ and $Y$ is isomorphic to $X\oplus B$. In 1996, W. T.
Gowers solved the Schroeder–Bernstein problem for Banach spaces by
showing that $X$ is not necessarily isomorphic to $Y$. In the present paper,
we give a necessary and sufficient condition on sextuples
$(p, q, r, s, u, v)$ in ${\mathbb N}$ with $p+q \geq 2$, $r+s \geq 1$
and $u, v \in {\mathbb N}^*$ for $X$ to be isomorphic to $Y$
whenever these spaces satisfy the following decomposition scheme:
$$\left \{\eqalign{
^u \sim X^p \oplus Y^q, \cr
^v \sim A^r \oplus B^s.\cr
}
\right.$$
Namely, ${\mit\Omega}=(p-u)(s-r-v)-q(r-s)$ is different from zero
and ${\mit\Omega}$ divides $p+q-u$ and $v$. In other words, we obtain an arithmetic characterization of some extensions of the classical Pełczyński
decomposition method in Banach spaces. This result leads naturally
to several problems closely related to the Schroeder–Bernstein problem.
Mots-clés :
banach spaces isomorphic oplus isomorphic oplus gowers solved schroeder bernstein problem banach spaces showing necessarily isomorphic present paper necessary sufficient condition sextuples nbsp mathbb geq geq mathbb * isomorphic whenever these spaces satisfy following decomposition scheme eqalign sim oplus sim oplus right namely mit omega p u s r v q r s different zero mit omega divides q u other words obtain arithmetic characterization extensions classical czy ski decomposition method banach spaces result leads naturally several problems closely related schroeder bernstein problem
Affiliations des auteurs :
Elói Medina Galego 1
@article{10_4064_sm180_1_3,
author = {El\'oi Medina Galego},
title = {A note on extensions of {Pe{\l}czy\'nski's} decomposition
method in {Banach} spaces},
journal = {Studia Mathematica},
pages = {27--40},
year = {2007},
volume = {180},
number = {1},
doi = {10.4064/sm180-1-3},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm180-1-3/}
}
Elói Medina Galego. A note on extensions of Pełczyński's decomposition method in Banach spaces. Studia Mathematica, Tome 180 (2007) no. 1, pp. 27-40. doi: 10.4064/sm180-1-3
Cité par Sources :