Operator Segal algebras in Fourier algebras
Studia Mathematica, Tome 179 (2007) no. 3, pp. 277-295
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a locally compact group, $\mathrm{A}(G)$ its Fourier algebra
and $\mathrm{L}^1(G)$ the space of Haar integrable functions on $G$.
We study the Segal algebra ${\mathrm{S}^1\!\mathrm{A}(G)}=
{\mathrm{A}(G)}\cap{\rm L}^1(G)$ in
${\mathrm{A}(G)}$. It admits an operator space structure which makes
it a completely contractive Banach algebra. We compute
the dual space of $\mathrm{S}^1\!\mathrm{A}(G)$. We use it to show that the
restriction operator $u\mapsto u|_H:{\mathrm{S}^1\!\mathrm{A}(G)}\to{\mathrm{A}(H)}$, for
some non-open closed subgroups $H$, is a surjective complete quotient map.
We also show that if $N$ is a non-compact
closed subgroup, then the averaging operator $\tau_N:{\mathrm{S}^1\!\mathrm{A}(G)}\to
\mathrm{L}^1({G/N})$,
$\tau_Nu(sN)=\int_N u(sn)\,dn,\!$ is a surjective complete quotient map.
This puts an operator space perspective on the philosophy that
${\mathrm{S}^1\!\mathrm{A}(G)}$ is “locally ${\rm A}(G)$ while globally $\mathrm{L}^1$”.
Also, using the operator space structure
we can show that ${\mathrm{S}^1\!\mathrm{A}(G)}$ is operator amenable exactly
when when $G$ is compact; and we can show that it is always operator
weakly amenable. To obtain the latter fact, we use E. Samei's
theory of hyper-Tauberian Banach algebras.
Mots-clés :
locally compact group mathrm its fourier algebra mathrm space haar integrable functions study segal algebra mathrm mathrm mathrm cap mathrm admits operator space structure which makes completely contractive banach algebra compute dual space mathrm mathrm restriction operator mapsto mathrm mathrm mathrm non open closed subgroups nbsp surjective complete quotient map non compact closed subgroup averaging operator tau mathrm mathrm mathrm tau int surjective complete quotient map puts operator space perspective philosophy mathrm mathrm locally while globally mathrm using operator space structure mathrm mathrm operator amenable exactly when compact always operator weakly amenable obtain latter nbsp sameis theory hyper tauberian banach algebras
Affiliations des auteurs :
Brian E. Forrest 1 ; Nico Spronk 1 ; Peter J. Wood 1
@article{10_4064_sm179_3_5,
author = {Brian E. Forrest and Nico Spronk and Peter J. Wood},
title = {Operator {Segal} algebras in {Fourier} algebras},
journal = {Studia Mathematica},
pages = {277--295},
publisher = {mathdoc},
volume = {179},
number = {3},
year = {2007},
doi = {10.4064/sm179-3-5},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-5/}
}
TY - JOUR AU - Brian E. Forrest AU - Nico Spronk AU - Peter J. Wood TI - Operator Segal algebras in Fourier algebras JO - Studia Mathematica PY - 2007 SP - 277 EP - 295 VL - 179 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-5/ DO - 10.4064/sm179-3-5 LA - de ID - 10_4064_sm179_3_5 ER -
Brian E. Forrest; Nico Spronk; Peter J. Wood. Operator Segal algebras in Fourier algebras. Studia Mathematica, Tome 179 (2007) no. 3, pp. 277-295. doi: 10.4064/sm179-3-5
Cité par Sources :