Operator Segal algebras in Fourier algebras
Studia Mathematica, Tome 179 (2007) no. 3, pp. 277-295

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a locally compact group, $\mathrm{A}(G)$ its Fourier algebra and $\mathrm{L}^1(G)$ the space of Haar integrable functions on $G$. We study the Segal algebra ${\mathrm{S}^1\!\mathrm{A}(G)}= {\mathrm{A}(G)}\cap{\rm L}^1(G)$ in ${\mathrm{A}(G)}$. It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of $\mathrm{S}^1\!\mathrm{A}(G)$. We use it to show that the restriction operator $u\mapsto u|_H:{\mathrm{S}^1\!\mathrm{A}(G)}\to{\mathrm{A}(H)}$, for some non-open closed subgroups $H$, is a surjective complete quotient map. We also show that if $N$ is a non-compact closed subgroup, then the averaging operator $\tau_N:{\mathrm{S}^1\!\mathrm{A}(G)}\to \mathrm{L}^1({G/N})$, $\tau_Nu(sN)=\int_N u(sn)\,dn,\!$ is a surjective complete quotient map. This puts an operator space perspective on the philosophy that ${\mathrm{S}^1\!\mathrm{A}(G)}$ is “locally ${\rm A}(G)$ while globally $\mathrm{L}^1$”. Also, using the operator space structure we can show that ${\mathrm{S}^1\!\mathrm{A}(G)}$ is operator amenable exactly when when $G$ is compact; and we can show that it is always operator weakly amenable. To obtain the latter fact, we use E. Samei's theory of hyper-Tauberian Banach algebras.
DOI : 10.4064/sm179-3-5
Mots-clés : locally compact group mathrm its fourier algebra mathrm space haar integrable functions study segal algebra mathrm mathrm mathrm cap mathrm admits operator space structure which makes completely contractive banach algebra compute dual space mathrm mathrm restriction operator mapsto mathrm mathrm mathrm non open closed subgroups nbsp surjective complete quotient map non compact closed subgroup averaging operator tau mathrm mathrm mathrm tau int surjective complete quotient map puts operator space perspective philosophy mathrm mathrm locally while globally mathrm using operator space structure mathrm mathrm operator amenable exactly when compact always operator weakly amenable obtain latter nbsp sameis theory hyper tauberian banach algebras

Brian E. Forrest 1 ; Nico Spronk 1 ; Peter J. Wood 1

1 Department of Pure Mathematics University of Waterloo Waterloo, ON, N2L 3G1, Canada
@article{10_4064_sm179_3_5,
     author = {Brian E. Forrest and Nico Spronk and Peter J. Wood},
     title = {Operator {Segal} algebras in {Fourier} algebras},
     journal = {Studia Mathematica},
     pages = {277--295},
     publisher = {mathdoc},
     volume = {179},
     number = {3},
     year = {2007},
     doi = {10.4064/sm179-3-5},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-5/}
}
TY  - JOUR
AU  - Brian E. Forrest
AU  - Nico Spronk
AU  - Peter J. Wood
TI  - Operator Segal algebras in Fourier algebras
JO  - Studia Mathematica
PY  - 2007
SP  - 277
EP  - 295
VL  - 179
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-5/
DO  - 10.4064/sm179-3-5
LA  - de
ID  - 10_4064_sm179_3_5
ER  - 
%0 Journal Article
%A Brian E. Forrest
%A Nico Spronk
%A Peter J. Wood
%T Operator Segal algebras in Fourier algebras
%J Studia Mathematica
%D 2007
%P 277-295
%V 179
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-5/
%R 10.4064/sm179-3-5
%G de
%F 10_4064_sm179_3_5
Brian E. Forrest; Nico Spronk; Peter J. Wood. Operator Segal algebras in Fourier algebras. Studia Mathematica, Tome 179 (2007) no. 3, pp. 277-295. doi: 10.4064/sm179-3-5

Cité par Sources :