1School of Mathematical Sciences University of KwaZulu-Natal Durban 4041, South Africa 2Faculty of Mathematics, Informatics and Mechanics Warsaw University Banacha 2 02-097 Warszawa, Poland
Studia Mathematica, Tome 179 (2007) no. 3, pp. 217-238
We show that the result of Kato on the existence of a semigroup solving the Kolmogorov system of equations in $l_1$ can be generalized to a larger class of the so-called Kantorovich–Banach spaces. We also present a number of related generation results that can be proved using positivity methods, as well as some examples.
Keywords:
result kato existence semigroup solving kolmogorov system equations generalized larger class so called kantorovich banach spaces present number related generation results proved using positivity methods examples
Affiliations des auteurs :
Jacek Banasiak 
1
;
Miros/law Lachowicz 
2
1
School of Mathematical Sciences University of KwaZulu-Natal Durban 4041, South Africa
2
Faculty of Mathematics, Informatics and Mechanics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_sm179_3_2,
author = {Jacek Banasiak and Miros/law Lachowicz},
title = {Around the {Kato} generation theorem for semigroups},
journal = {Studia Mathematica},
pages = {217--238},
year = {2007},
volume = {179},
number = {3},
doi = {10.4064/sm179-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-2/}
}
TY - JOUR
AU - Jacek Banasiak
AU - Miros/law Lachowicz
TI - Around the Kato generation theorem for semigroups
JO - Studia Mathematica
PY - 2007
SP - 217
EP - 238
VL - 179
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-2/
DO - 10.4064/sm179-3-2
LA - en
ID - 10_4064_sm179_3_2
ER -
%0 Journal Article
%A Jacek Banasiak
%A Miros/law Lachowicz
%T Around the Kato generation theorem for semigroups
%J Studia Mathematica
%D 2007
%P 217-238
%V 179
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-3-2/
%R 10.4064/sm179-3-2
%G en
%F 10_4064_sm179_3_2
Jacek Banasiak; Miros/law Lachowicz. Around the Kato generation theorem for semigroups. Studia Mathematica, Tome 179 (2007) no. 3, pp. 217-238. doi: 10.4064/sm179-3-2