Boundedness for a bilinear model sum operator on $\mathbb R^n$
Studia Mathematica, Tome 179 (2007) no. 2, pp. 185-197

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The purpose of this article is to obtain a multidimensional extension of Lacey and Thiele's result on the boundedness of a model sum which plays a crucial role in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a simplification of the original proof of Lacey and Thiele modeled after the presentation of Bilyk and Grafakos.
DOI : 10.4064/sm179-2-5
Keywords: purpose article obtain multidimensional extension lacey thieles result boundedness model sum which plays crucial role boundedness bilinear hilbert transform dimension proof simplification original proof lacey thiele modeled after presentation bilyk grafakos

Erin Terwilleger 1

1 Department of Mathematics, U-3009 University of Connecticut Storrs, CT 06269, U.S.A.
@article{10_4064_sm179_2_5,
     author = {Erin Terwilleger},
     title = {Boundedness for a bilinear
model sum operator on $\mathbb R^n$},
     journal = {Studia Mathematica},
     pages = {185--197},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2007},
     doi = {10.4064/sm179-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-5/}
}
TY  - JOUR
AU  - Erin Terwilleger
TI  - Boundedness for a bilinear
model sum operator on $\mathbb R^n$
JO  - Studia Mathematica
PY  - 2007
SP  - 185
EP  - 197
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-5/
DO  - 10.4064/sm179-2-5
LA  - en
ID  - 10_4064_sm179_2_5
ER  - 
%0 Journal Article
%A Erin Terwilleger
%T Boundedness for a bilinear
model sum operator on $\mathbb R^n$
%J Studia Mathematica
%D 2007
%P 185-197
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-5/
%R 10.4064/sm179-2-5
%G en
%F 10_4064_sm179_2_5
Erin Terwilleger. Boundedness for a bilinear
model sum operator on $\mathbb R^n$. Studia Mathematica, Tome 179 (2007) no. 2, pp. 185-197. doi: 10.4064/sm179-2-5

Cité par Sources :