Second derivatives of norms and contractive complementation in vector-valued spaces
Studia Mathematica, Tome 179 (2007) no. 2, pp. 149-166

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider 1-complemented subspaces (ranges of contractive projections) of vector-valued spaces $\ell _p(X)$, where $X$ is a Banach space with a 1-unconditional basis and $p\in (1,2)\cup (2,\infty )$. If the norm of $X$ is twice continuously differentiable and satisfies certain conditions connecting the norm and the notion of disjointness with respect to the basis, then we prove that every 1-complemented subspace of $\ell _p(X)$ admits a basis of mutually disjoint elements. Moreover, we show that every contractive projection is then an averaging operator. We apply our results to the space $\ell _p(\ell _q)$ with $p,q\in (1,2)\cup (2,\infty )$ and obtain a complete characterization of its 1-complemented subspaces.
DOI : 10.4064/sm179-2-3
Keywords: consider complemented subspaces ranges contractive projections vector valued spaces ell where banach space unconditional basis cup infty norm twice continuously differentiable satisfies certain conditions connecting norm notion disjointness respect basis prove every complemented subspace ell admits basis mutually disjoint elements moreover every contractive projection averaging operator apply results space ell ell cup infty obtain complete characterization its complemented subspaces

Bas Lemmens 1 ; Beata Randrianantoanina 2 ; Onno van Gaans 3

1 Mathematics Institute University of Warwick CV4 7AL Coventry, United Kingdom
2 Department of Mathematics and Statistics Miami University Oxford, OH 45056, U.S.A.
3 Mathematical Insitute Leiden University P.O. Box 9512 2300 RA Leiden, The Netherlands
@article{10_4064_sm179_2_3,
     author = {Bas Lemmens and Beata Randrianantoanina and Onno van Gaans},
     title = {Second derivatives of norms and
 contractive complementation in vector-valued spaces},
     journal = {Studia Mathematica},
     pages = {149--166},
     publisher = {mathdoc},
     volume = {179},
     number = {2},
     year = {2007},
     doi = {10.4064/sm179-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-3/}
}
TY  - JOUR
AU  - Bas Lemmens
AU  - Beata Randrianantoanina
AU  - Onno van Gaans
TI  - Second derivatives of norms and
 contractive complementation in vector-valued spaces
JO  - Studia Mathematica
PY  - 2007
SP  - 149
EP  - 166
VL  - 179
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-3/
DO  - 10.4064/sm179-2-3
LA  - en
ID  - 10_4064_sm179_2_3
ER  - 
%0 Journal Article
%A Bas Lemmens
%A Beata Randrianantoanina
%A Onno van Gaans
%T Second derivatives of norms and
 contractive complementation in vector-valued spaces
%J Studia Mathematica
%D 2007
%P 149-166
%V 179
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-3/
%R 10.4064/sm179-2-3
%G en
%F 10_4064_sm179_2_3
Bas Lemmens; Beata Randrianantoanina; Onno van Gaans. Second derivatives of norms and
 contractive complementation in vector-valued spaces. Studia Mathematica, Tome 179 (2007) no. 2, pp. 149-166. doi: 10.4064/sm179-2-3

Cité par Sources :