Wave equation and multiplier estimates on $ax+b$ groups
Studia Mathematica, Tome 179 (2007) no. 2, pp. 117-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $L$ be the distinguished Laplacian on certain
semidirect products of $\mathbb R$ by $\mathbb R^n$ which are of $ax+b$ type.
We prove pointwise estimates for the convolution kernels of
spectrally localized wave operators of the form
$e^{it\sqrt{L}} \psi(\sqrt{L}/\lambda)$
for arbitrary time $t$ and arbitrary $\lambda>0$, where $\psi$ is a smooth
bump function supported in $[-2,2]$ if $\lambda\le 1$ and
in $[1,2]$ if $\lambda\ge 1$. As a corollary, we reprove
a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)]
for this particular class of groups, and derive
Sobolev estimates for solutions to the wave equation associated
to $L$. There appears no dispersive effect with respect to the
$L^\infty$-norms
for large times in our estimates, so that it seems unlikely that
non-trivial Strichartz type
estimates hold.
Keywords:
distinguished laplacian certain semidirect products mathbb mathbb which type prove pointwise estimates convolution kernels spectrally localized wave operators form sqrt psi sqrt lambda arbitrary time arbitrary lambda where psi smooth bump function supported lambda lambda corollary reprove basic multiplier estimate hebisch steger math particular class groups derive sobolev estimates solutions wave equation associated there appears dispersive effect respect infty norms large times estimates seems unlikely non trivial strichartz type estimates
Affiliations des auteurs :
Detlef Müller 1 ; Christoph Thiele 2
@article{10_4064_sm179_2_2,
author = {Detlef M\"uller and Christoph Thiele},
title = {Wave equation and multiplier estimates on $ax+b$ groups},
journal = {Studia Mathematica},
pages = {117--148},
publisher = {mathdoc},
volume = {179},
number = {2},
year = {2007},
doi = {10.4064/sm179-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-2/}
}
TY - JOUR AU - Detlef Müller AU - Christoph Thiele TI - Wave equation and multiplier estimates on $ax+b$ groups JO - Studia Mathematica PY - 2007 SP - 117 EP - 148 VL - 179 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm179-2-2/ DO - 10.4064/sm179-2-2 LA - en ID - 10_4064_sm179_2_2 ER -
Detlef Müller; Christoph Thiele. Wave equation and multiplier estimates on $ax+b$ groups. Studia Mathematica, Tome 179 (2007) no. 2, pp. 117-148. doi: 10.4064/sm179-2-2
Cité par Sources :