Wave front set for positive operators and for positive elements in non-commutative convolution algebras
Studia Mathematica, Tome 179 (2007) no. 1, pp. 63-80

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\rm WF}_*$ be the wave front set with respect to $C^\infty$, quasi analyticity or analyticity, and let $K$ be the kernel of a positive operator from $C_0^\infty$ to $\mathscr D'$. We prove that if $\xi\ne0$ and $(x,x,\xi ,-\xi )\notin {\rm WF}_*(K)$, then $(x,y,\xi ,-\eta )\notin {\rm WF}_*(K)$ and $(y,x,\eta ,-\xi )\notin {\rm WF}_*(K)$ for any $y,\eta$. We apply this property to positive elements with respect to the weighted convolution $$ u*_B\varphi (x)=\int u(x-y)\varphi (y)B(x,y)\, dy, $$ where $B\in C^\infty$ is appropriate, and prove that if $(u*_B\varphi ,\varphi )\ge 0$ for every $\varphi \in C_0^\infty$ and $(0,\xi )\notin {\rm WF}_*(u)$, then $(x,\xi )\notin {\rm WF}_*(u)$ for any $x$.
DOI : 10.4064/sm179-1-6
Keywords: * wave front set respect infty quasi analyticity analyticity kernel positive operator infty mathscr prove notin * eta notin * eta notin * eta apply property positive elements respect weighted convolution u* varphi int x y varphi y where infty appropriate prove u* varphi varphi every varphi infty notin * notin * nbsp

Joachim Toft 1

1 Department of Mathematics and Systems Engineering Växjö University S-351 95 Växjö, Sweden
@article{10_4064_sm179_1_6,
     author = {Joachim Toft},
     title = {Wave front set for positive operators and for positive
elements in non-commutative convolution algebras},
     journal = {Studia Mathematica},
     pages = {63--80},
     publisher = {mathdoc},
     volume = {179},
     number = {1},
     year = {2007},
     doi = {10.4064/sm179-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-6/}
}
TY  - JOUR
AU  - Joachim Toft
TI  - Wave front set for positive operators and for positive
elements in non-commutative convolution algebras
JO  - Studia Mathematica
PY  - 2007
SP  - 63
EP  - 80
VL  - 179
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-6/
DO  - 10.4064/sm179-1-6
LA  - en
ID  - 10_4064_sm179_1_6
ER  - 
%0 Journal Article
%A Joachim Toft
%T Wave front set for positive operators and for positive
elements in non-commutative convolution algebras
%J Studia Mathematica
%D 2007
%P 63-80
%V 179
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-6/
%R 10.4064/sm179-1-6
%G en
%F 10_4064_sm179_1_6
Joachim Toft. Wave front set for positive operators and for positive
elements in non-commutative convolution algebras. Studia Mathematica, Tome 179 (2007) no. 1, pp. 63-80. doi: 10.4064/sm179-1-6

Cité par Sources :