Wave front set for positive operators and for positive
elements in non-commutative convolution algebras
Studia Mathematica, Tome 179 (2007) no. 1, pp. 63-80
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\rm WF}_*$ be the wave front set with respect to $C^\infty$,
quasi analyticity or analyticity, and let $K$ be the
kernel of a positive operator from $C_0^\infty$ to $\mathscr D'$.
We prove that if $\xi\ne0$ and $(x,x,\xi ,-\xi )\notin {\rm WF}_*(K)$, then $(x,y,\xi
,-\eta )\notin {\rm WF}_*(K)$ and $(y,x,\eta ,-\xi
)\notin {\rm WF}_*(K)$ for any $y,\eta$. We apply this property to positive elements with respect
to the weighted convolution
$$
u*_B\varphi (x)=\int u(x-y)\varphi
(y)B(x,y)\, dy,
$$
where $B\in C^\infty$ is appropriate, and prove that
if $(u*_B\varphi ,\varphi )\ge 0$ for every $\varphi \in C_0^\infty$
and $(0,\xi )\notin {\rm WF}_*(u)$, then $(x,\xi
)\notin {\rm WF}_*(u)$ for any $x$.
Keywords:
* wave front set respect infty quasi analyticity analyticity kernel positive operator infty mathscr prove notin * eta notin * eta notin * eta apply property positive elements respect weighted convolution u* varphi int x y varphi y where infty appropriate prove u* varphi varphi every varphi infty notin * notin * nbsp
Affiliations des auteurs :
Joachim Toft 1
@article{10_4064_sm179_1_6,
author = {Joachim Toft},
title = {Wave front set for positive operators and for positive
elements in non-commutative convolution algebras},
journal = {Studia Mathematica},
pages = {63--80},
publisher = {mathdoc},
volume = {179},
number = {1},
year = {2007},
doi = {10.4064/sm179-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-6/}
}
TY - JOUR AU - Joachim Toft TI - Wave front set for positive operators and for positive elements in non-commutative convolution algebras JO - Studia Mathematica PY - 2007 SP - 63 EP - 80 VL - 179 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-6/ DO - 10.4064/sm179-1-6 LA - en ID - 10_4064_sm179_1_6 ER -
%0 Journal Article %A Joachim Toft %T Wave front set for positive operators and for positive elements in non-commutative convolution algebras %J Studia Mathematica %D 2007 %P 63-80 %V 179 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-6/ %R 10.4064/sm179-1-6 %G en %F 10_4064_sm179_1_6
Joachim Toft. Wave front set for positive operators and for positive elements in non-commutative convolution algebras. Studia Mathematica, Tome 179 (2007) no. 1, pp. 63-80. doi: 10.4064/sm179-1-6
Cité par Sources :