Shilov boundary
for holomorphic functions on some classical Banach spaces
Studia Mathematica, Tome 179 (2007) no. 1, pp. 27-39
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $ {\mathcal{A}}_\infty (B_X)$ be the Banach space of all
bounded and continuous functions on the closed unit ball $B_X$ of a complex
Banach space $X$ and holomorphic on the open unit ball, with sup norm, and
let $ {\mathcal{A}}_{\rm u} (B_X)$ be the subspace of $ {\mathcal{A}}_\infty (B_X)$
of those functions which are uniformly continuous on $B_X.$ A subset $B
\subset B_X$ is a boundary for $ {\mathcal{A}}_\infty (B_X)$ if $\Vert f \Vert
= \sup _{ x \in B} \vert f(x) \vert $ for every $f \in {\mathcal{A}}_\infty
(B_X)$. We prove that for $X= d(w,1) $ (the Lorentz sequence space)
and $X= C_1(H)$, the trace class operators, there is a minimal closed
boundary for $ {\mathcal{A}}_\infty (B_X)$. On the other hand, for
$X=\mathcal{S}$, the Schreier space, and $X= K(\ell_p, \ell_q ) $ ($1 \le p \le
q \infty$), there is no minimal closed boundary for the corresponding spaces
of holomorphic functions.
Keywords:
mathcal infty banach space bounded continuous functions closed unit ball complex banach space holomorphic unit ball sup norm mathcal subspace mathcal infty those functions which uniformly continuous subset subset boundary mathcal infty vert vert sup vert vert every mathcal infty prove lorentz sequence space trace class operators there minimal closed boundary mathcal infty other mathcal schreier space ell ell infty there minimal closed boundary corresponding spaces holomorphic functions
Affiliations des auteurs :
María D. Acosta 1 ; Mary Lilian Lourenço 2
@article{10_4064_sm179_1_3,
author = {Mar{\'\i}a D. Acosta and Mary Lilian Louren\c{c}o},
title = {Shilov boundary
for holomorphic functions on some classical {Banach} spaces},
journal = {Studia Mathematica},
pages = {27--39},
publisher = {mathdoc},
volume = {179},
number = {1},
year = {2007},
doi = {10.4064/sm179-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-3/}
}
TY - JOUR AU - María D. Acosta AU - Mary Lilian Lourenço TI - Shilov boundary for holomorphic functions on some classical Banach spaces JO - Studia Mathematica PY - 2007 SP - 27 EP - 39 VL - 179 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-3/ DO - 10.4064/sm179-1-3 LA - en ID - 10_4064_sm179_1_3 ER -
%0 Journal Article %A María D. Acosta %A Mary Lilian Lourenço %T Shilov boundary for holomorphic functions on some classical Banach spaces %J Studia Mathematica %D 2007 %P 27-39 %V 179 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-3/ %R 10.4064/sm179-1-3 %G en %F 10_4064_sm179_1_3
María D. Acosta; Mary Lilian Lourenço. Shilov boundary for holomorphic functions on some classical Banach spaces. Studia Mathematica, Tome 179 (2007) no. 1, pp. 27-39. doi: 10.4064/sm179-1-3
Cité par Sources :