Approximating real linear operators
Studia Mathematica, Tome 179 (2007) no. 1, pp. 7-25
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A framework to extend the singular value
decomposition of a matrix to a real linear operator
${\cal M}:{\mathbb C}^n \rightarrow {\mathbb C}^p$ is suggested.
To this end real linear operators called operets
are introduced, to have an appropriate
generalization of rank-one matrices.
Then, adopting the interpretation of the singular value
decomposition of a matrix
as providing its nearest small rank approximations,
${\cal M}$ is approximated with a sum of operets.
Keywords:
framework extend singular value decomposition matrix real linear operator cal mathbb rightarrow mathbb suggested end real linear operators called operets introduced have appropriate generalization rank one matrices adopting interpretation singular value decomposition matrix providing its nearest small rank approximations cal approximated sum operets
Affiliations des auteurs :
Marko Huhtanen 1 ; Olavi Nevanlinna 1
@article{10_4064_sm179_1_2,
author = {Marko Huhtanen and Olavi Nevanlinna},
title = {Approximating real linear operators},
journal = {Studia Mathematica},
pages = {7--25},
publisher = {mathdoc},
volume = {179},
number = {1},
year = {2007},
doi = {10.4064/sm179-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-2/}
}
Marko Huhtanen; Olavi Nevanlinna. Approximating real linear operators. Studia Mathematica, Tome 179 (2007) no. 1, pp. 7-25. doi: 10.4064/sm179-1-2
Cité par Sources :