Bounded evaluation operators from $H^p$ into $\ell^q$
Studia Mathematica, Tome 179 (2007) no. 1, pp. 1-6

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given $0 p,q \infty$ and any sequence ${\bf z} = \{z_n\}$ in the unit disc ${\bf D}$, we define an operator from functions on ${\bf D}$ to sequences by $T_{{\bf z},p}(f) = \{(1-|z_n|^2)^{1/p}f(z_n)\}$. Necessary and sufficient conditions on $\{z_n\} $ are given such that $T_{{\bf z},p}$ maps the Hardy space $H^p$ boundedly into the sequence space $\ell^q$. A corresponding result for Bergman spaces is also stated.
DOI : 10.4064/sm179-1-1
Keywords: given infty sequence unit disc define operator functions sequences n necessary sufficient conditions given maps hardy space boundedly sequence space ell corresponding result bergman spaces stated

Martin Smith 1

1 Department of Mathematics University of York York Y010 5DD United Kingdom and Greenhead College Greenhead Road Huddersfield West Yorkshire HD1 4ES, United Kingdom
@article{10_4064_sm179_1_1,
     author = {Martin Smith},
     title = {Bounded evaluation operators from $H^p$ into $\ell^q$},
     journal = {Studia Mathematica},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {179},
     number = {1},
     year = {2007},
     doi = {10.4064/sm179-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-1/}
}
TY  - JOUR
AU  - Martin Smith
TI  - Bounded evaluation operators from $H^p$ into $\ell^q$
JO  - Studia Mathematica
PY  - 2007
SP  - 1
EP  - 6
VL  - 179
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-1/
DO  - 10.4064/sm179-1-1
LA  - en
ID  - 10_4064_sm179_1_1
ER  - 
%0 Journal Article
%A Martin Smith
%T Bounded evaluation operators from $H^p$ into $\ell^q$
%J Studia Mathematica
%D 2007
%P 1-6
%V 179
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-1/
%R 10.4064/sm179-1-1
%G en
%F 10_4064_sm179_1_1
Martin Smith. Bounded evaluation operators from $H^p$ into $\ell^q$. Studia Mathematica, Tome 179 (2007) no. 1, pp. 1-6. doi: 10.4064/sm179-1-1

Cité par Sources :