Bounded evaluation operators from $H^p$ into $\ell^q$
Studia Mathematica, Tome 179 (2007) no. 1, pp. 1-6
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given $0 p,q \infty$ and any sequence
${\bf z} = \{z_n\}$ in the unit disc ${\bf D}$, we define an operator from functions
on ${\bf D}$ to
sequences by
$T_{{\bf z},p}(f) = \{(1-|z_n|^2)^{1/p}f(z_n)\}$. Necessary and sufficient
conditions on $\{z_n\} $ are given such that $T_{{\bf z},p}$ maps the Hardy space
$H^p$ boundedly into the sequence space $\ell^q$. A corresponding result
for Bergman spaces is also stated.
Keywords:
given infty sequence unit disc define operator functions sequences n necessary sufficient conditions given maps hardy space boundedly sequence space ell corresponding result bergman spaces stated
Affiliations des auteurs :
Martin Smith  1
@article{10_4064_sm179_1_1,
author = {Martin Smith},
title = {Bounded evaluation operators from $H^p$ into $\ell^q$},
journal = {Studia Mathematica},
pages = {1--6},
year = {2007},
volume = {179},
number = {1},
doi = {10.4064/sm179-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm179-1-1/}
}
Martin Smith. Bounded evaluation operators from $H^p$ into $\ell^q$. Studia Mathematica, Tome 179 (2007) no. 1, pp. 1-6. doi: 10.4064/sm179-1-1
Cité par Sources :