An $L^q(L^2)$-theory of the generalized Stokes
resolvent system in  infinite cylinders
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 178 (2007) no. 3, pp. 197-216
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Estimates of the generalized Stokes resolvent system, i.e. 
with prescribed divergence, in an infinite cylinder 
${\mit\Omega}={\mit\Sigma}\times\mathbb R$ with ${\mit\Sigma}\subset \mathbb R^{n-1}$, a bounded domain of 
class $C^{1,1}$,
are obtained in the space $L^q(\mathbb R;L^2({\mit\Sigma}))$, 
$q\in (1,\infty)$. As a preparation, spectral decompositions 
of vector-valued homogeneous Sobolev spaces are studied. 
The main theorem is proved using the techniques of Schauder decompositions, 
operator-valued multiplier functions and $R$-boundedness of 
operator families.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
estimates generalized stokes resolvent system prescribed divergence infinite cylinder mit omega mit sigma times mathbb mit sigma subset mathbb n bounded domain class nbsp obtained space mathbb mit sigma infty preparation spectral decompositions vector valued homogeneous sobolev spaces studied main theorem proved using techniques schauder decompositions operator valued multiplier functions r boundedness operator families
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Reinhard Farwig 1 ; Myong-Hwan Ri 2
@article{10_4064_sm178_3_1,
     author = {Reinhard Farwig and Myong-Hwan Ri},
     title = {An $L^q(L^2)$-theory of the generalized {Stokes
resolvent} system in  infinite cylinders},
     journal = {Studia Mathematica},
     pages = {197--216},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2007},
     doi = {10.4064/sm178-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm178-3-1/}
}
                      
                      
                    TY - JOUR AU - Reinhard Farwig AU - Myong-Hwan Ri TI - An $L^q(L^2)$-theory of the generalized Stokes resolvent system in infinite cylinders JO - Studia Mathematica PY - 2007 SP - 197 EP - 216 VL - 178 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm178-3-1/ DO - 10.4064/sm178-3-1 LA - en ID - 10_4064_sm178_3_1 ER -
%0 Journal Article %A Reinhard Farwig %A Myong-Hwan Ri %T An $L^q(L^2)$-theory of the generalized Stokes resolvent system in infinite cylinders %J Studia Mathematica %D 2007 %P 197-216 %V 178 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm178-3-1/ %R 10.4064/sm178-3-1 %G en %F 10_4064_sm178_3_1
Reinhard Farwig; Myong-Hwan Ri. An $L^q(L^2)$-theory of the generalized Stokes resolvent system in infinite cylinders. Studia Mathematica, Tome 178 (2007) no. 3, pp. 197-216. doi: 10.4064/sm178-3-1
Cité par Sources :
