An $L^q(L^2)$-theory of the generalized Stokes resolvent system in infinite cylinders
Studia Mathematica, Tome 178 (2007) no. 3, pp. 197-216

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Estimates of the generalized Stokes resolvent system, i.e. with prescribed divergence, in an infinite cylinder ${\mit\Omega}={\mit\Sigma}\times\mathbb R$ with ${\mit\Sigma}\subset \mathbb R^{n-1}$, a bounded domain of class $C^{1,1}$, are obtained in the space $L^q(\mathbb R;L^2({\mit\Sigma}))$, $q\in (1,\infty)$. As a preparation, spectral decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theorem is proved using the techniques of Schauder decompositions, operator-valued multiplier functions and $R$-boundedness of operator families.
DOI : 10.4064/sm178-3-1
Keywords: estimates generalized stokes resolvent system prescribed divergence infinite cylinder mit omega mit sigma times mathbb mit sigma subset mathbb n bounded domain class nbsp obtained space mathbb mit sigma infty preparation spectral decompositions vector valued homogeneous sobolev spaces studied main theorem proved using techniques schauder decompositions operator valued multiplier functions r boundedness operator families

Reinhard Farwig 1 ; Myong-Hwan Ri 2

1 Department of Mathematics Darmstadt University of Technology 64289 Darmstadt, Germany
2 Institute of Mathematics Academy of Sciences Pyongyang, DPR Korea
@article{10_4064_sm178_3_1,
     author = {Reinhard Farwig and Myong-Hwan Ri},
     title = {An $L^q(L^2)$-theory of the generalized {Stokes
resolvent} system in  infinite cylinders},
     journal = {Studia Mathematica},
     pages = {197--216},
     publisher = {mathdoc},
     volume = {178},
     number = {3},
     year = {2007},
     doi = {10.4064/sm178-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm178-3-1/}
}
TY  - JOUR
AU  - Reinhard Farwig
AU  - Myong-Hwan Ri
TI  - An $L^q(L^2)$-theory of the generalized Stokes
resolvent system in  infinite cylinders
JO  - Studia Mathematica
PY  - 2007
SP  - 197
EP  - 216
VL  - 178
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm178-3-1/
DO  - 10.4064/sm178-3-1
LA  - en
ID  - 10_4064_sm178_3_1
ER  - 
%0 Journal Article
%A Reinhard Farwig
%A Myong-Hwan Ri
%T An $L^q(L^2)$-theory of the generalized Stokes
resolvent system in  infinite cylinders
%J Studia Mathematica
%D 2007
%P 197-216
%V 178
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm178-3-1/
%R 10.4064/sm178-3-1
%G en
%F 10_4064_sm178_3_1
Reinhard Farwig; Myong-Hwan Ri. An $L^q(L^2)$-theory of the generalized Stokes
resolvent system in  infinite cylinders. Studia Mathematica, Tome 178 (2007) no. 3, pp. 197-216. doi: 10.4064/sm178-3-1

Cité par Sources :