Noncommutative function theory and unique extensions
Studia Mathematica, Tome 178 (2007) no. 2, pp. 177-195

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We generalize, to the setting of Arveson's maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő $L^p$-distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of $H^\infty $ from the 1960's. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and give a necessary condition for every completely contractive homomorphism on a unital subalgebra of a $C^*$-algebra to have a unique completely positive extension.
DOI : 10.4064/sm178-2-4
Keywords: generalize setting arvesons maximal subdiagonal subalgebras finite von neumann algebras szeg p distance estimate classical theorems riesz gleason whitney kolmogorov byproduct completes noncommutative analog famous cycle theorems characterizing function algebraic generalizations infty sample other results prove kaplansky density result large class these algebras necessary condition every completely contractive homomorphism unital subalgebra * algebra have unique completely positive extension

David P. Blecher 1 ; Louis E. Labuschagne 2

1 Department of Mathematics University of Houston Houston, TX 77204-3008, U.S.A.
2 Department of Mathematical Sciences P.O. Box 392 0003 Unisa, South Africa
@article{10_4064_sm178_2_4,
     author = {David P. Blecher and Louis E. Labuschagne},
     title = {Noncommutative function theory and unique extensions},
     journal = {Studia Mathematica},
     pages = {177--195},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2007},
     doi = {10.4064/sm178-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-4/}
}
TY  - JOUR
AU  - David P. Blecher
AU  - Louis E. Labuschagne
TI  - Noncommutative function theory and unique extensions
JO  - Studia Mathematica
PY  - 2007
SP  - 177
EP  - 195
VL  - 178
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-4/
DO  - 10.4064/sm178-2-4
LA  - en
ID  - 10_4064_sm178_2_4
ER  - 
%0 Journal Article
%A David P. Blecher
%A Louis E. Labuschagne
%T Noncommutative function theory and unique extensions
%J Studia Mathematica
%D 2007
%P 177-195
%V 178
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-4/
%R 10.4064/sm178-2-4
%G en
%F 10_4064_sm178_2_4
David P. Blecher; Louis E. Labuschagne. Noncommutative function theory and unique extensions. Studia Mathematica, Tome 178 (2007) no. 2, pp. 177-195. doi: 10.4064/sm178-2-4

Cité par Sources :