Noncommutative function theory and unique extensions
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 178 (2007) no. 2, pp. 177-195
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We generalize, to the setting of Arveson's maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő  $L^p$-distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of $H^\infty $ from the 1960's. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and give a necessary condition for every completely contractive homomorphism on a unital subalgebra of a $C^*$-algebra to have a unique completely positive extension. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
generalize setting arvesons maximal subdiagonal subalgebras finite von neumann algebras szeg p distance estimate classical theorems riesz gleason whitney kolmogorov byproduct completes noncommutative analog famous cycle theorems characterizing function algebraic generalizations infty sample other results prove kaplansky density result large class these algebras necessary condition every completely contractive homomorphism unital subalgebra * algebra have unique completely positive extension
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              David P. Blecher 1 ; Louis E. Labuschagne 2
@article{10_4064_sm178_2_4,
     author = {David P. Blecher and Louis E. Labuschagne},
     title = {Noncommutative function theory and unique extensions},
     journal = {Studia Mathematica},
     pages = {177--195},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2007},
     doi = {10.4064/sm178-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-4/}
}
                      
                      
                    TY - JOUR AU - David P. Blecher AU - Louis E. Labuschagne TI - Noncommutative function theory and unique extensions JO - Studia Mathematica PY - 2007 SP - 177 EP - 195 VL - 178 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-4/ DO - 10.4064/sm178-2-4 LA - en ID - 10_4064_sm178_2_4 ER -
David P. Blecher; Louis E. Labuschagne. Noncommutative function theory and unique extensions. Studia Mathematica, Tome 178 (2007) no. 2, pp. 177-195. doi: 10.4064/sm178-2-4
Cité par Sources :
