Minimal multi-convex projections
Studia Mathematica, Tome 178 (2007) no. 2, pp. 99-124

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We say that a function from $X=C^L[0,1]$ is $k$-convex (for $k \leq L$) if its $k$th derivative is nonnegative. Let $P$ denote a projection from $X$ onto $V=\varPi_n \subset X$, where $\varPi_n$ denotes the space of algebraic polynomials of degree less than or equal to $n$. If we want $P$ to leave invariant the cone of $k$-convex functions ($k \leq n$), we find that such a demand is impossible to fulfill for nearly every $k$. Indeed, only for $k=n-1$ and $k=n$ does such a projection exist. So let us consider instead a more general “shape” to preserve. Let $\sigma=( \sigma_0, \sigma_1, \dots, \sigma_n)$ be an $(n+1)$-tuple with $\sigma_i \in \{0, 1 \}$; we say $f \in X$ is multi-convex if $f^{(i)} \geq 0$ for $i$ such that $\sigma_i=1$. We characterize those $\sigma$ for which there exists a projection onto $V$ preserving the multi-convex shape. For those shapes able to be preserved via a projection, we construct (in all but one case) a minimal norm multi-convex preserving projection. Out of necessity, we include some results concerning the geometrical structure of $C^L[0,1]$.
DOI : 10.4064/sm178-2-1
Keywords: say function k convex leq its kth derivative nonnegative denote projection varpi subset where varpi denotes space algebraic polynomials degree equal want leave invariant cone k convex functions leq demand impossible fulfill nearly every indeed only n does projection exist consider instead general shape preserve sigma sigma sigma dots sigma tuple sigma say multi convex geq sigma characterize those sigma which there exists projection preserving multi convex shape those shapes able preserved via projection construct minimal norm multi convex preserving projection out necessity include results concerning geometrical structure

Grzegorz Lewicki 1 ; Michael Prophet 2

1 Department of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
2 Department of Mathematics University of Northern Iowa Cedar Falls, IA 50614-0506, U.S.A.
@article{10_4064_sm178_2_1,
     author = {Grzegorz Lewicki and Michael Prophet},
     title = {Minimal multi-convex projections},
     journal = {Studia Mathematica},
     pages = {99--124},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2007},
     doi = {10.4064/sm178-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-1/}
}
TY  - JOUR
AU  - Grzegorz Lewicki
AU  - Michael Prophet
TI  - Minimal multi-convex projections
JO  - Studia Mathematica
PY  - 2007
SP  - 99
EP  - 124
VL  - 178
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-1/
DO  - 10.4064/sm178-2-1
LA  - en
ID  - 10_4064_sm178_2_1
ER  - 
%0 Journal Article
%A Grzegorz Lewicki
%A Michael Prophet
%T Minimal multi-convex projections
%J Studia Mathematica
%D 2007
%P 99-124
%V 178
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm178-2-1/
%R 10.4064/sm178-2-1
%G en
%F 10_4064_sm178_2_1
Grzegorz Lewicki; Michael Prophet. Minimal multi-convex projections. Studia Mathematica, Tome 178 (2007) no. 2, pp. 99-124. doi: 10.4064/sm178-2-1

Cité par Sources :