The Daugavet equation for polynomials
Studia Mathematica, Tome 178 (2007) no. 1, pp. 63-84

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study when the Daugavet equation is satisfied for weakly compact polynomials on a Banach space $X$, i.e. when the equality $$ \|\mathop{\rm Id}+P\|=1+\|P\| $$ is satisfied for all weakly compact polynomials $P:X\to X$. We show that this is the case when $X=C(K)$, the real or complex space of continuous functions on a compact space $K$ without isolated points. We also study the alternative Daugavet equation $$ \max_{|\omega|=1} \|\mathop{\rm Id} +\omega P\| = 1 + \|P\| $$ for polynomials $P:X\rightarrow X$. We show that this equation holds for every polynomial on the complex space $X=C(K)$ ($K$ arbitrary) with values in $X$. This result is not true in the real case. Finally, we study the Daugavet and the alternative Daugavet equations for $k$-homogeneous polynomials.
DOI : 10.4064/sm178-1-4
Keywords: study daugavet equation satisfied weakly compact polynomials banach space equality mathop satisfied weakly compact polynomials real complex space continuous functions compact space without isolated points study alternative daugavet equation max omega mathop omega polynomials rightarrow equation holds every polynomial complex space arbitrary values result real finally study daugavet alternative daugavet equations k homogeneous polynomials

Yun Sung Choi 1 ; Domingo García 2 ; Manuel Maestre 3 ; Miguel Martín 4

1 Department of Mathematics POSTECH Pohang 790-784, Korea
2 Departamento de Análisis Matemático Universidad de Valencia Doctor Moliner 50 46100 Burjasot (Valencia), Spain
3 Departamento de Análisis Matemático Universidad de Valencia Doctor Moliner 50 $46100$ Burjasot (Valencia), Spain
4 Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain
@article{10_4064_sm178_1_4,
     author = {Yun Sung Choi and Domingo Garc{\'\i}a and Manuel Maestre and Miguel Mart{\'\i}n},
     title = {The {Daugavet} equation for polynomials},
     journal = {Studia Mathematica},
     pages = {63--84},
     publisher = {mathdoc},
     volume = {178},
     number = {1},
     year = {2007},
     doi = {10.4064/sm178-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm178-1-4/}
}
TY  - JOUR
AU  - Yun Sung Choi
AU  - Domingo García
AU  - Manuel Maestre
AU  - Miguel Martín
TI  - The Daugavet equation for polynomials
JO  - Studia Mathematica
PY  - 2007
SP  - 63
EP  - 84
VL  - 178
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm178-1-4/
DO  - 10.4064/sm178-1-4
LA  - en
ID  - 10_4064_sm178_1_4
ER  - 
%0 Journal Article
%A Yun Sung Choi
%A Domingo García
%A Manuel Maestre
%A Miguel Martín
%T The Daugavet equation for polynomials
%J Studia Mathematica
%D 2007
%P 63-84
%V 178
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm178-1-4/
%R 10.4064/sm178-1-4
%G en
%F 10_4064_sm178_1_4
Yun Sung Choi; Domingo García; Manuel Maestre; Miguel Martín. The Daugavet equation for polynomials. Studia Mathematica, Tome 178 (2007) no. 1, pp. 63-84. doi: 10.4064/sm178-1-4

Cité par Sources :