A martingale approach to general Franklin systems
Studia Mathematica, Tome 177 (2006) no. 3, pp. 251-275

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove unconditionality of general Franklin systems in $L^p(X)$, where $X$ is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
DOI : 10.4064/sm177-3-5
Keywords: prove unconditionality general franklin systems where umd space where general franklin system corresponds quasi dyadic weakly regular sequence knots

Anna Kamont 1 ; Paul F. X. Müller 2

1 Institute of Mathematics Polish Academy of Sciences Abrahama 18 81-825 Sopot, Poland
2 Department of Mathematics J. Kepler University Linz A-4040 Linz, Austria
@article{10_4064_sm177_3_5,
     author = {Anna Kamont and Paul F. X. M\"uller},
     title = {A martingale approach to general {Franklin} systems},
     journal = {Studia Mathematica},
     pages = {251--275},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2006},
     doi = {10.4064/sm177-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/}
}
TY  - JOUR
AU  - Anna Kamont
AU  - Paul F. X. Müller
TI  - A martingale approach to general Franklin systems
JO  - Studia Mathematica
PY  - 2006
SP  - 251
EP  - 275
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/
DO  - 10.4064/sm177-3-5
LA  - en
ID  - 10_4064_sm177_3_5
ER  - 
%0 Journal Article
%A Anna Kamont
%A Paul F. X. Müller
%T A martingale approach to general Franklin systems
%J Studia Mathematica
%D 2006
%P 251-275
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/
%R 10.4064/sm177-3-5
%G en
%F 10_4064_sm177_3_5
Anna Kamont; Paul F. X. Müller. A martingale approach to general Franklin systems. Studia Mathematica, Tome 177 (2006) no. 3, pp. 251-275. doi: 10.4064/sm177-3-5

Cité par Sources :