A martingale approach to general Franklin systems
Studia Mathematica, Tome 177 (2006) no. 3, pp. 251-275
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove unconditionality of general Franklin systems in $L^p(X)$, where $X$ is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
Keywords:
prove unconditionality general franklin systems where umd space where general franklin system corresponds quasi dyadic weakly regular sequence knots
Affiliations des auteurs :
Anna Kamont 1 ; Paul F. X. Müller 2
@article{10_4064_sm177_3_5,
author = {Anna Kamont and Paul F. X. M\"uller},
title = {A martingale approach to general {Franklin} systems},
journal = {Studia Mathematica},
pages = {251--275},
publisher = {mathdoc},
volume = {177},
number = {3},
year = {2006},
doi = {10.4064/sm177-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/}
}
TY - JOUR AU - Anna Kamont AU - Paul F. X. Müller TI - A martingale approach to general Franklin systems JO - Studia Mathematica PY - 2006 SP - 251 EP - 275 VL - 177 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/ DO - 10.4064/sm177-3-5 LA - en ID - 10_4064_sm177_3_5 ER -
Anna Kamont; Paul F. X. Müller. A martingale approach to general Franklin systems. Studia Mathematica, Tome 177 (2006) no. 3, pp. 251-275. doi: 10.4064/sm177-3-5
Cité par Sources :