1Institute of Mathematics Polish Academy of Sciences Abrahama 18 81-825 Sopot, Poland 2Department of Mathematics J. Kepler University Linz A-4040 Linz, Austria
Studia Mathematica, Tome 177 (2006) no. 3, pp. 251-275
We prove unconditionality of general Franklin systems in $L^p(X)$, where $X$ is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.
Keywords:
prove unconditionality general franklin systems where umd space where general franklin system corresponds quasi dyadic weakly regular sequence knots
Affiliations des auteurs :
Anna Kamont 
1
;
Paul F. X. Müller 
2
1
Institute of Mathematics Polish Academy of Sciences Abrahama 18 81-825 Sopot, Poland
2
Department of Mathematics J. Kepler University Linz A-4040 Linz, Austria
@article{10_4064_sm177_3_5,
author = {Anna Kamont and Paul F. X. M\"uller},
title = {A martingale approach to general {Franklin} systems},
journal = {Studia Mathematica},
pages = {251--275},
year = {2006},
volume = {177},
number = {3},
doi = {10.4064/sm177-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/}
}
TY - JOUR
AU - Anna Kamont
AU - Paul F. X. Müller
TI - A martingale approach to general Franklin systems
JO - Studia Mathematica
PY - 2006
SP - 251
EP - 275
VL - 177
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/
DO - 10.4064/sm177-3-5
LA - en
ID - 10_4064_sm177_3_5
ER -
%0 Journal Article
%A Anna Kamont
%A Paul F. X. Müller
%T A martingale approach to general Franklin systems
%J Studia Mathematica
%D 2006
%P 251-275
%V 177
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-5/
%R 10.4064/sm177-3-5
%G en
%F 10_4064_sm177_3_5
Anna Kamont; Paul F. X. Müller. A martingale approach to general Franklin systems. Studia Mathematica, Tome 177 (2006) no. 3, pp. 251-275. doi: 10.4064/sm177-3-5