Factorization theorem for product Hardy spaces
Studia Mathematica, Tome 177 (2006) no. 3, pp. 235-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We extend the well known
factorization theorems on the unit disk to product Hardy spaces,
which generalizes the previous results obtained by Coifman,
Rochberg and Weiss. The basic tools are the boundedness of a certain
bilinear form on ${\mathbb R}^2_+\times{\mathbb R}^2_+$ and the characterization
of ${\rm BMO}({\mathbb R}^2_+\times{\mathbb R}^2_+)$ recently obtained by Ferguson,
Lacey and Sadosky.
Keywords:
extend known factorization theorems unit disk product hardy spaces which generalizes previous results obtained coifman rochberg weiss basic tools boundedness certain bilinear form mathbb times mathbb characterization bmo mathbb times mathbb recently obtained ferguson lacey sadosky
Affiliations des auteurs :
Wengu Chen 1 ; Yongsheng Han 2 ; Changxing Miao 3
@article{10_4064_sm177_3_4,
author = {Wengu Chen and Yongsheng Han and Changxing Miao},
title = {Factorization theorem for product {Hardy} spaces},
journal = {Studia Mathematica},
pages = {235--249},
publisher = {mathdoc},
volume = {177},
number = {3},
year = {2006},
doi = {10.4064/sm177-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-4/}
}
TY - JOUR AU - Wengu Chen AU - Yongsheng Han AU - Changxing Miao TI - Factorization theorem for product Hardy spaces JO - Studia Mathematica PY - 2006 SP - 235 EP - 249 VL - 177 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-4/ DO - 10.4064/sm177-3-4 LA - en ID - 10_4064_sm177_3_4 ER -
Wengu Chen; Yongsheng Han; Changxing Miao. Factorization theorem for product Hardy spaces. Studia Mathematica, Tome 177 (2006) no. 3, pp. 235-249. doi: 10.4064/sm177-3-4
Cité par Sources :