The bounded approximation property for the predual of the space of bounded holomorphic mappings
Studia Mathematica, Tome 177 (2006) no. 3, pp. 225-233

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

When $U$ is the open unit ball of a separable Banach space $E$, we show that $G^{\infty }(U)$, the predual of the space of bounded holomorphic mappings on $U$, has the bounded approximation property if and only if $E$ has the bounded approximation property.
DOI : 10.4064/sm177-3-3
Keywords: unit ball separable banach space infty predual space bounded holomorphic mappings has bounded approximation property only has bounded approximation property

Erhan Çalışkan 1

1 Yıldız Teknik Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Davutpaşa, 34210 Esenler Istanbul, Turkey
@article{10_4064_sm177_3_3,
     author = {Erhan \c{C}al{\i}\c{s}kan},
     title = {The bounded approximation property for the predual
 of the space of bounded holomorphic mappings},
     journal = {Studia Mathematica},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2006},
     doi = {10.4064/sm177-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-3/}
}
TY  - JOUR
AU  - Erhan Çalışkan
TI  - The bounded approximation property for the predual
 of the space of bounded holomorphic mappings
JO  - Studia Mathematica
PY  - 2006
SP  - 225
EP  - 233
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-3/
DO  - 10.4064/sm177-3-3
LA  - en
ID  - 10_4064_sm177_3_3
ER  - 
%0 Journal Article
%A Erhan Çalışkan
%T The bounded approximation property for the predual
 of the space of bounded holomorphic mappings
%J Studia Mathematica
%D 2006
%P 225-233
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-3/
%R 10.4064/sm177-3-3
%G en
%F 10_4064_sm177_3_3
Erhan Çalışkan. The bounded approximation property for the predual
 of the space of bounded holomorphic mappings. Studia Mathematica, Tome 177 (2006) no. 3, pp. 225-233. doi: 10.4064/sm177-3-3

Cité par Sources :