The bounded approximation property for the predual
of the space of bounded holomorphic mappings
Studia Mathematica, Tome 177 (2006) no. 3, pp. 225-233
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
When $U$ is the open unit ball of a separable Banach space $E$, we show that $G^{\infty }(U)$, the predual of the space of bounded holomorphic mappings on $U$, has the bounded approximation property if and only if $E$ has the bounded approximation property.
Keywords:
unit ball separable banach space infty predual space bounded holomorphic mappings has bounded approximation property only has bounded approximation property
Affiliations des auteurs :
Erhan Çalışkan  1
@article{10_4064_sm177_3_3,
author = {Erhan \c{C}al{\i}\c{s}kan},
title = {The bounded approximation property for the predual
of the space of bounded holomorphic mappings},
journal = {Studia Mathematica},
pages = {225--233},
year = {2006},
volume = {177},
number = {3},
doi = {10.4064/sm177-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-3/}
}
TY - JOUR AU - Erhan Çalışkan TI - The bounded approximation property for the predual of the space of bounded holomorphic mappings JO - Studia Mathematica PY - 2006 SP - 225 EP - 233 VL - 177 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-3-3/ DO - 10.4064/sm177-3-3 LA - en ID - 10_4064_sm177_3_3 ER -
Erhan Çalışkan. The bounded approximation property for the predual of the space of bounded holomorphic mappings. Studia Mathematica, Tome 177 (2006) no. 3, pp. 225-233. doi: 10.4064/sm177-3-3
Cité par Sources :