Digit sets of integral self-affine tiles with prime determinant
Studia Mathematica, Tome 177 (2006) no. 2, pp. 183-194

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M\in M_{n}(\mathbb{Z})$ be expanding such that $|\!\det(M)|=p$ is a prime and $p\mathbb{Z}^n\not\subseteq M^{2}(\mathbb{Z}^n)$. Let $D\subset\mathbb{Z}^n$ be a finite set with $|D|=|\!\det(M)|$. Suppose the attractor $T(M,D)$ of the iterated function system $\{\phi_{d}(x)=M^{-1}(x+d)\}_{d\in D}$ has positive Lebesgue measure. We prove that (i) if $D\not\subseteq M(\mathbb{Z}^n)$, then $D$ is a complete set of coset representatives of $\mathbb{Z}^n/M(\mathbb{Z}^n)$; (ii) if $D\subseteq M(\mathbb{Z}^n)$, then there exists a positive integer $\gamma$ such that $D=M^{\gamma}D_{0}$, where $D_{0}$ is a complete set of coset representatives of $\mathbb{Z}^n/M(\mathbb{Z}^n)$. This improves the corresponding results of Kenyon, Lagarias and Wang. We then give several remarks and examples to illustrate some problems on digit sets.
DOI : 10.4064/sm177-2-7
Keywords: mathbb expanding det prime mathbb subseteq mathbb subset mathbb finite set det suppose attractor iterated function system phi has positive lebesgue measure prove subseteq mathbb complete set coset representatives mathbb mathbb subseteq mathbb there exists positive integer gamma gamma where complete set coset representatives mathbb mathbb improves corresponding results kenyon lagarias wang several remarks examples illustrate problems digit sets

Jian-Lin Li 1

1 College of Mathematics and Information Science Shaanxi Normal University Xi'an 710062, P.R. China
@article{10_4064_sm177_2_7,
     author = {Jian-Lin Li},
     title = {Digit sets of integral self-affine tiles with prime determinant},
     journal = {Studia Mathematica},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2006},
     doi = {10.4064/sm177-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-7/}
}
TY  - JOUR
AU  - Jian-Lin Li
TI  - Digit sets of integral self-affine tiles with prime determinant
JO  - Studia Mathematica
PY  - 2006
SP  - 183
EP  - 194
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-7/
DO  - 10.4064/sm177-2-7
LA  - en
ID  - 10_4064_sm177_2_7
ER  - 
%0 Journal Article
%A Jian-Lin Li
%T Digit sets of integral self-affine tiles with prime determinant
%J Studia Mathematica
%D 2006
%P 183-194
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-7/
%R 10.4064/sm177-2-7
%G en
%F 10_4064_sm177_2_7
Jian-Lin Li. Digit sets of integral self-affine tiles with prime determinant. Studia Mathematica, Tome 177 (2006) no. 2, pp. 183-194. doi: 10.4064/sm177-2-7

Cité par Sources :