Digit sets of integral self-affine tiles with prime determinant
Studia Mathematica, Tome 177 (2006) no. 2, pp. 183-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $M\in M_{n}(\mathbb{Z})$ be expanding such
that $|\!\det(M)|=p$ is a prime and $p\mathbb{Z}^n\not\subseteq
M^{2}(\mathbb{Z}^n)$. Let $D\subset\mathbb{Z}^n$ be a finite set
with $|D|=|\!\det(M)|$. Suppose the attractor $T(M,D)$ of the
iterated function system $\{\phi_{d}(x)=M^{-1}(x+d)\}_{d\in D}$
has positive Lebesgue measure. We prove
that (i) if $D\not\subseteq M(\mathbb{Z}^n)$, then $D$ is a
complete set of coset representatives of
$\mathbb{Z}^n/M(\mathbb{Z}^n)$; (ii) if $D\subseteq
M(\mathbb{Z}^n)$, then there exists a positive integer $\gamma$
such that $D=M^{\gamma}D_{0}$, where $D_{0}$ is a complete set of
coset representatives of $\mathbb{Z}^n/M(\mathbb{Z}^n)$. This
improves the corresponding results of Kenyon, Lagarias and Wang.
We then give several remarks and examples to illustrate
some problems on digit sets.
Keywords:
mathbb expanding det prime mathbb subseteq mathbb subset mathbb finite set det suppose attractor iterated function system phi has positive lebesgue measure prove subseteq mathbb complete set coset representatives mathbb mathbb subseteq mathbb there exists positive integer gamma gamma where complete set coset representatives mathbb mathbb improves corresponding results kenyon lagarias wang several remarks examples illustrate problems digit sets
Affiliations des auteurs :
Jian-Lin Li 1
@article{10_4064_sm177_2_7,
author = {Jian-Lin Li},
title = {Digit sets of integral self-affine tiles with prime determinant},
journal = {Studia Mathematica},
pages = {183--194},
publisher = {mathdoc},
volume = {177},
number = {2},
year = {2006},
doi = {10.4064/sm177-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-7/}
}
Jian-Lin Li. Digit sets of integral self-affine tiles with prime determinant. Studia Mathematica, Tome 177 (2006) no. 2, pp. 183-194. doi: 10.4064/sm177-2-7
Cité par Sources :