Spectral synthesis and operator synthesis
Studia Mathematica, Tome 177 (2006) no. 2, pp. 173-181

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Relations between spectral synthesis in the Fourier algebra $A(G)$ of a compact group $G$ and the concept of operator synthesis due to Arveson have been studied in the literature. For an $A(G)$-submodule $X$ of $\mathop {\rm VN}\nolimits (G)$, $X$-synthesis in $A(G)$ has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such $X$ we associate a $V^{\infty }(G)$-submodule $ \widehat {X}$ of ${\mathcal B}(L^{2}(G))$ (where $V^{\infty }(G)$ is the weak-$*$ Haagerup tensor product $L^{\infty }(G)\otimes _{w^{*}h} L^{\infty }(G)$ ), define the concept of $ \widehat {X}$-operator synthesis and prove that a closed set $E$ in $G$ is of $X$-synthesis if and only if $E^{*}:=\{ (x,y)\in G\times G: xy^{-1}\in E\} $ is of $\widehat {X}$-operator synthesis.
DOI : 10.4064/sm177-2-6
Keywords: relations between spectral synthesis fourier algebra compact group concept operator synthesis due arveson have studied literature submodule mathop nolimits x synthesis has introduced kaniuth lau studied recently present authors associate infty submodule widehat mathcal where infty weak * haagerup tensor product infty otimes * infty define concept widehat operator synthesis prove closed set x synthesis only * times widehat operator synthesis

K. Parthasarathy 1 ; R. Prakash 2

1 Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai 600 005, India
2 Ramanujan Institute for Advanced Study in Mathematics University of Madras Chennai-600 005, India
@article{10_4064_sm177_2_6,
     author = {K. Parthasarathy and R. Prakash},
     title = {Spectral synthesis and operator synthesis},
     journal = {Studia Mathematica},
     pages = {173--181},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2006},
     doi = {10.4064/sm177-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-6/}
}
TY  - JOUR
AU  - K. Parthasarathy
AU  - R. Prakash
TI  - Spectral synthesis and operator synthesis
JO  - Studia Mathematica
PY  - 2006
SP  - 173
EP  - 181
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-6/
DO  - 10.4064/sm177-2-6
LA  - en
ID  - 10_4064_sm177_2_6
ER  - 
%0 Journal Article
%A K. Parthasarathy
%A R. Prakash
%T Spectral synthesis and operator synthesis
%J Studia Mathematica
%D 2006
%P 173-181
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-6/
%R 10.4064/sm177-2-6
%G en
%F 10_4064_sm177_2_6
K. Parthasarathy; R. Prakash. Spectral synthesis and operator synthesis. Studia Mathematica, Tome 177 (2006) no. 2, pp. 173-181. doi: 10.4064/sm177-2-6

Cité par Sources :