Weighted measure algebras and uniform norms
Studia Mathematica, Tome 177 (2006) no. 2, pp. 133-139 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $\omega$ be a weight on an LCA group $G$. Let ${M(G, \omega)}$ consist of the Radon measures $\mu$ on $G$ such that $\omega\mu$ is a regular complex Borel measure on $G$. It is proved that: (i) ${M(G, \omega)}$ is regular iff ${M(G, \omega)}$ has unique uniform norm property (UUNP) iff ${L^1(G, \omega)}$ has UUNP and $G$ is discrete; (ii) ${M(G, \omega)}$ has a minimum uniform norm iff ${L^1(G, \omega)}$ has UUNP; (iii) ${M_{00}(G, \omega)}$ is regular iff ${M_{00}(G, \omega)}$ has UUNP iff ${L^1(G, \omega)}$ has UUNP, where ${M_{00}(G, \omega)} := \{\mu \in {M(G, \omega)} : \widehat\mu = 0 \hbox{ on } {\mit\Delta} ({M(G, \omega)}) \setminus {\mit\Delta} ({L^1(G, \omega)}) \}$.
DOI : 10.4064/sm177-2-3
Keywords: omega weight lca group omega consist radon measures omega regular complex borel measure proved nbsp omega regular omega has unique uniform norm property uunp omega has uunp discrete nbsp omega has minimum uniform norm omega has uunp iii nbsp omega regular omega has uunp omega has uunp where omega omega widehat hbox mit delta omega setminus mit delta omega

S. J. Bhatt  1   ; H. V. Dedania  1

1 Department of Mathematics Sardar Patel University Vallabh Vidyanagar 388120, Gujarat, India
@article{10_4064_sm177_2_3,
     author = {S. J. Bhatt and H. V. Dedania},
     title = {Weighted measure algebras and uniform norms},
     journal = {Studia Mathematica},
     pages = {133--139},
     year = {2006},
     volume = {177},
     number = {2},
     doi = {10.4064/sm177-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-3/}
}
TY  - JOUR
AU  - S. J. Bhatt
AU  - H. V. Dedania
TI  - Weighted measure algebras and uniform norms
JO  - Studia Mathematica
PY  - 2006
SP  - 133
EP  - 139
VL  - 177
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-3/
DO  - 10.4064/sm177-2-3
LA  - en
ID  - 10_4064_sm177_2_3
ER  - 
%0 Journal Article
%A S. J. Bhatt
%A H. V. Dedania
%T Weighted measure algebras and uniform norms
%J Studia Mathematica
%D 2006
%P 133-139
%V 177
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-3/
%R 10.4064/sm177-2-3
%G en
%F 10_4064_sm177_2_3
S. J. Bhatt; H. V. Dedania. Weighted measure algebras and uniform norms. Studia Mathematica, Tome 177 (2006) no. 2, pp. 133-139. doi: 10.4064/sm177-2-3

Cité par Sources :