Let $\omega$ be a weight on an LCA group $G$. Let ${M(G, \omega)}$ consist of
the Radon measures $\mu$ on $G$ such that $\omega\mu$ is a regular complex Borel measure on $G$. It is proved that: (i) ${M(G, \omega)}$ is regular iff ${M(G, \omega)}$ has unique uniform norm property (UUNP) iff
${L^1(G, \omega)}$ has UUNP and $G$ is discrete; (ii) ${M(G, \omega)}$ has a minimum uniform norm iff
${L^1(G, \omega)}$ has UUNP; (iii) ${M_{00}(G, \omega)}$ is regular iff ${M_{00}(G, \omega)}$ has UUNP iff
${L^1(G, \omega)}$ has UUNP, where ${M_{00}(G, \omega)} := \{\mu \in {M(G, \omega)} : \widehat\mu = 0 \hbox{ on } {\mit\Delta} ({M(G, \omega)}) \setminus {\mit\Delta}
({L^1(G, \omega)}) \}$.
@article{10_4064_sm177_2_3,
author = {S. J. Bhatt and H. V. Dedania},
title = {Weighted measure algebras and uniform norms},
journal = {Studia Mathematica},
pages = {133--139},
year = {2006},
volume = {177},
number = {2},
doi = {10.4064/sm177-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-3/}
}
TY - JOUR
AU - S. J. Bhatt
AU - H. V. Dedania
TI - Weighted measure algebras and uniform norms
JO - Studia Mathematica
PY - 2006
SP - 133
EP - 139
VL - 177
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-3/
DO - 10.4064/sm177-2-3
LA - en
ID - 10_4064_sm177_2_3
ER -
%0 Journal Article
%A S. J. Bhatt
%A H. V. Dedania
%T Weighted measure algebras and uniform norms
%J Studia Mathematica
%D 2006
%P 133-139
%V 177
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-3/
%R 10.4064/sm177-2-3
%G en
%F 10_4064_sm177_2_3
S. J. Bhatt; H. V. Dedania. Weighted measure algebras and uniform norms. Studia Mathematica, Tome 177 (2006) no. 2, pp. 133-139. doi: 10.4064/sm177-2-3