On the $L^p$ index of spin Dirac operators
on conical manifolds
Studia Mathematica, Tome 177 (2006) no. 2, pp. 97-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We compute the index of the Dirac operator on a spin Riemannian manifold with conical singularities, acting from $L^p({\mit\Sigma} ^+)$ to $L^q({\mit\Sigma} ^-)$ with $p,q>1$. When $1+{n}/{p}-{n}/{q}> 0$ we obtain the usual Atiyah–Patodi–Singer formula, but with a spectral cut at $(n+1)/{2}-{n}/{q}$ instead of $0$ in the definition of the eta invariant. In particular we reprove Chou's formula for the $L^2$ index. For $1+{n}/{p}-{n}/{q}\leq 0$ the index formula contains an extra term related to the Calderón projector.
Keywords:
compute index dirac operator spin riemannian manifold conical singularities acting mit sigma mit sigma obtain usual atiyah patodi singer formula spectral cut instead definition eta invariant particular reprove chous formula index leq index formula contains extra term related calder projector
Affiliations des auteurs :
André Legrand 1 ; Sergiu Moroianu 2
@article{10_4064_sm177_2_1,
author = {Andr\'e Legrand and Sergiu Moroianu},
title = {On the $L^p$ index of spin {Dirac} operators
on conical manifolds},
journal = {Studia Mathematica},
pages = {97--112},
publisher = {mathdoc},
volume = {177},
number = {2},
year = {2006},
doi = {10.4064/sm177-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-1/}
}
TY - JOUR AU - André Legrand AU - Sergiu Moroianu TI - On the $L^p$ index of spin Dirac operators on conical manifolds JO - Studia Mathematica PY - 2006 SP - 97 EP - 112 VL - 177 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-2-1/ DO - 10.4064/sm177-2-1 LA - en ID - 10_4064_sm177_2_1 ER -
André Legrand; Sergiu Moroianu. On the $L^p$ index of spin Dirac operators on conical manifolds. Studia Mathematica, Tome 177 (2006) no. 2, pp. 97-112. doi: 10.4064/sm177-2-1
Cité par Sources :