As a natural extension of $L^p$ Sobolev spaces, we consider Hardy–Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy–Sobolev spaces.
@article{10_4064_sm177_1_3,
author = {Yong-Kum Cho and Joonil Kim},
title = {Atomic decomposition on {Hardy{\textendash}Sobolev} spaces},
journal = {Studia Mathematica},
pages = {25--42},
year = {2006},
volume = {177},
number = {1},
doi = {10.4064/sm177-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-3/}
}
TY - JOUR
AU - Yong-Kum Cho
AU - Joonil Kim
TI - Atomic decomposition on Hardy–Sobolev spaces
JO - Studia Mathematica
PY - 2006
SP - 25
EP - 42
VL - 177
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-3/
DO - 10.4064/sm177-1-3
LA - en
ID - 10_4064_sm177_1_3
ER -
%0 Journal Article
%A Yong-Kum Cho
%A Joonil Kim
%T Atomic decomposition on Hardy–Sobolev spaces
%J Studia Mathematica
%D 2006
%P 25-42
%V 177
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-3/
%R 10.4064/sm177-1-3
%G en
%F 10_4064_sm177_1_3
Yong-Kum Cho; Joonil Kim. Atomic decomposition on Hardy–Sobolev spaces. Studia Mathematica, Tome 177 (2006) no. 1, pp. 25-42. doi: 10.4064/sm177-1-3