Variations on Bochner–Riesz multipliers in the plane
Studia Mathematica, Tome 177 (2006) no. 1, pp. 1-8

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the multiplier $m_\mu$ defined for $\xi\in{\mathbb R}$ by $$ m_\mu(\xi)\doteq\left(\frac{1-\xi_{1}^{2}-\xi_{2}^{2}} {1-\xi_{1}}\right)^\mu 1_{D}(\xi), $$ ${D}$ denoting the open unit disk in ${\mathbb R}$. Given $p\in\ ]1,\infty[$, we show that the optimal range of $\mu$'s for which $m_\mu$ is a Fourier multiplier on $L^{p}$ is the same as for Bochner–Riesz means. The key ingredient is a lemma about some modifications of Bochner–Riesz means inside convex regions with smooth boundary and non-vanishing curvature, providing a more flexible version of a result by Iosevich et al. [Publ. Mat. 46 (2002)]. As an application, we show that the same characterization also holds true for the multiplier $p_\mu(\xi)\doteq(\xi_{2}-\xi_{1}^{2})_{+}^\mu \xi_{2}^{-\mu}$. Finally, we briefly discuss the $n$-dimensional analogue of these results.
DOI : 10.4064/sm177-1-1
Keywords: consider multiplier defined mathbb doteq frac right denoting unit disk mathbb given infty optimal range mus which fourier multiplier bochner riesz means key ingredient lemma about modifications bochner riesz means inside convex regions smooth boundary non vanishing curvature providing flexible version result iosevich publ mat application characterization holds multiplier doteq finally briefly discuss n dimensional analogue these results

Daniele Debertol 1

1 Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa (PI), Italy
@article{10_4064_sm177_1_1,
     author = {Daniele Debertol},
     title = {Variations on {Bochner{\textendash}Riesz} multipliers in the plane},
     journal = {Studia Mathematica},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {177},
     number = {1},
     year = {2006},
     doi = {10.4064/sm177-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-1/}
}
TY  - JOUR
AU  - Daniele Debertol
TI  - Variations on Bochner–Riesz multipliers in the plane
JO  - Studia Mathematica
PY  - 2006
SP  - 1
EP  - 8
VL  - 177
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-1/
DO  - 10.4064/sm177-1-1
LA  - en
ID  - 10_4064_sm177_1_1
ER  - 
%0 Journal Article
%A Daniele Debertol
%T Variations on Bochner–Riesz multipliers in the plane
%J Studia Mathematica
%D 2006
%P 1-8
%V 177
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm177-1-1/
%R 10.4064/sm177-1-1
%G en
%F 10_4064_sm177_1_1
Daniele Debertol. Variations on Bochner–Riesz multipliers in the plane. Studia Mathematica, Tome 177 (2006) no. 1, pp. 1-8. doi: 10.4064/sm177-1-1

Cité par Sources :