A Gaussian bound for convolutions of functions
on locally compact groups
Studia Mathematica, Tome 176 (2006) no. 3, pp. 201-213
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give new and general sufficient conditions for a Gaussian upper bound
on the convolutions
$K_{m+n} * K_{m+n-1} * \cdots * K_{m+1}$
of a suitable sequence $K_1, K_2, K_3, \ldots$ of complex-valued functions
on a unimodular, compactly generated locally compact group.
As applications,
we obtain Gaussian bounds for convolutions
of suitable probability densities,
and for convolutions of
small perturbations of densities.
Keywords:
general sufficient conditions gaussian upper bound convolutions * n * cdots * suitable sequence ldots complex valued functions unimodular compactly generated locally compact group applications obtain gaussian bounds convolutions suitable probability densities convolutions small perturbations densities
Affiliations des auteurs :
Nick Dungey 1
@article{10_4064_sm176_3_2,
author = {Nick Dungey},
title = {A {Gaussian} bound for convolutions of functions
on locally compact groups},
journal = {Studia Mathematica},
pages = {201--213},
year = {2006},
volume = {176},
number = {3},
doi = {10.4064/sm176-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-3-2/}
}
Nick Dungey. A Gaussian bound for convolutions of functions on locally compact groups. Studia Mathematica, Tome 176 (2006) no. 3, pp. 201-213. doi: 10.4064/sm176-3-2
Cité par Sources :