1Department of Mathematics University of Palermo Via Archirafi 34 90123 Palermo, Italy 2Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
Studia Mathematica, Tome 176 (2006) no. 2, pp. 159-176
We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil–Henstock–Pettis integral. In particular the Kurzweil–Henstock–Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.
Keywords:
prove several results talagrand proved pettis integral kurzweil henstock pettis integral particular kurzweil henstock pettis integrability characterized cores functions properties suitable operators defined integrands
Affiliations des auteurs :
L. Di Piazza 
1
;
K. Musiał 
2
1
Department of Mathematics University of Palermo Via Archirafi 34 90123 Palermo, Italy
2
Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_sm176_2_4,
author = {L. Di Piazza and K. Musia{\l}},
title = {Characterizations of
{Kurzweil{\textendash}Henstock{\textendash}Pettis} integrable functions},
journal = {Studia Mathematica},
pages = {159--176},
year = {2006},
volume = {176},
number = {2},
doi = {10.4064/sm176-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-4/}
}
TY - JOUR
AU - L. Di Piazza
AU - K. Musiał
TI - Characterizations of
Kurzweil–Henstock–Pettis integrable functions
JO - Studia Mathematica
PY - 2006
SP - 159
EP - 176
VL - 176
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-4/
DO - 10.4064/sm176-2-4
LA - en
ID - 10_4064_sm176_2_4
ER -
%0 Journal Article
%A L. Di Piazza
%A K. Musiał
%T Characterizations of
Kurzweil–Henstock–Pettis integrable functions
%J Studia Mathematica
%D 2006
%P 159-176
%V 176
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-4/
%R 10.4064/sm176-2-4
%G en
%F 10_4064_sm176_2_4
L. Di Piazza; K. Musiał. Characterizations of
Kurzweil–Henstock–Pettis integrable functions. Studia Mathematica, Tome 176 (2006) no. 2, pp. 159-176. doi: 10.4064/sm176-2-4