1Department of Mathematics University of Metz F-57045 Metz, France 2Department of Mathematics Chalmers University of Technology SE-412 96 Göteborg, Sweden
Studia Mathematica, Tome 176 (2006) no. 2, pp. 139-158
Let $G$ be a Lie group and $A(G)$ the Fourier algebra of $G$.
We describe sufficient conditions for complex-valued
functions to operate on elements $u\in A(G)$ of certain
differentiability classes in terms of the dimension of the group
$G$. Furthermore, generalizing a result of Kirsch and Müller [Ark.
Mat. 18 (1980), 145–155] we prove that closed
subsets $E$ of a smooth $m$-dimensional submanifold of a Lie group
$G$ having a certain cone property are sets of smooth spectral
synthesis. For such sets we give an estimate of the degree of
nilpotency of the quotient algebra $I_A(E)/J_A(E)$, where $I_A(E)$
and $J_A(E)$ are the largest and the smallest closed ideals
in $A(G)$ with hull $E$.
Keywords:
lie group fourier algebra describe sufficient conditions complex valued functions operate elements certain differentiability classes terms dimension group furthermore generalizing result kirsch ller ark mat prove closed subsets smooth m dimensional submanifold lie group having certain cone property sets smooth spectral synthesis sets estimate degree nilpotency quotient algebra where largest smallest closed ideals hull
Affiliations des auteurs :
Jean Ludwig 
1
;
Lyudmila Turowska 
2
1
Department of Mathematics University of Metz F-57045 Metz, France
2
Department of Mathematics Chalmers University of Technology SE-412 96 Göteborg, Sweden
@article{10_4064_sm176_2_3,
author = {Jean Ludwig and Lyudmila Turowska},
title = {Growth and smooth spectral synthesis
in the {Fourier} algebras of {Lie} groups},
journal = {Studia Mathematica},
pages = {139--158},
year = {2006},
volume = {176},
number = {2},
doi = {10.4064/sm176-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/}
}
TY - JOUR
AU - Jean Ludwig
AU - Lyudmila Turowska
TI - Growth and smooth spectral synthesis
in the Fourier algebras of Lie groups
JO - Studia Mathematica
PY - 2006
SP - 139
EP - 158
VL - 176
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/
DO - 10.4064/sm176-2-3
LA - en
ID - 10_4064_sm176_2_3
ER -
%0 Journal Article
%A Jean Ludwig
%A Lyudmila Turowska
%T Growth and smooth spectral synthesis
in the Fourier algebras of Lie groups
%J Studia Mathematica
%D 2006
%P 139-158
%V 176
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/
%R 10.4064/sm176-2-3
%G en
%F 10_4064_sm176_2_3
Jean Ludwig; Lyudmila Turowska. Growth and smooth spectral synthesis
in the Fourier algebras of Lie groups. Studia Mathematica, Tome 176 (2006) no. 2, pp. 139-158. doi: 10.4064/sm176-2-3