Growth and smooth spectral synthesis in the Fourier algebras of Lie groups
Studia Mathematica, Tome 176 (2006) no. 2, pp. 139-158

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a Lie group and $A(G)$ the Fourier algebra of $G$. We describe sufficient conditions for complex-valued functions to operate on elements $u\in A(G)$ of certain differentiability classes in terms of the dimension of the group $G$. Furthermore, generalizing a result of Kirsch and Müller [Ark. Mat. 18 (1980), 145–155] we prove that closed subsets $E$ of a smooth $m$-dimensional submanifold of a Lie group $G$ having a certain cone property are sets of smooth spectral synthesis. For such sets we give an estimate of the degree of nilpotency of the quotient algebra $I_A(E)/J_A(E)$, where $I_A(E)$ and $J_A(E)$ are the largest and the smallest closed ideals in $A(G)$ with hull $E$.
DOI : 10.4064/sm176-2-3
Keywords: lie group fourier algebra describe sufficient conditions complex valued functions operate elements certain differentiability classes terms dimension group furthermore generalizing result kirsch ller ark mat prove closed subsets smooth m dimensional submanifold lie group having certain cone property sets smooth spectral synthesis sets estimate degree nilpotency quotient algebra where largest smallest closed ideals hull

Jean Ludwig 1 ; Lyudmila Turowska 2

1 Department of Mathematics University of Metz F-57045 Metz, France
2 Department of Mathematics Chalmers University of Technology SE-412 96 Göteborg, Sweden
@article{10_4064_sm176_2_3,
     author = {Jean Ludwig and Lyudmila Turowska},
     title = {Growth and smooth spectral synthesis
 in the {Fourier} algebras of {Lie} groups},
     journal = {Studia Mathematica},
     pages = {139--158},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2006},
     doi = {10.4064/sm176-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/}
}
TY  - JOUR
AU  - Jean Ludwig
AU  - Lyudmila Turowska
TI  - Growth and smooth spectral synthesis
 in the Fourier algebras of Lie groups
JO  - Studia Mathematica
PY  - 2006
SP  - 139
EP  - 158
VL  - 176
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/
DO  - 10.4064/sm176-2-3
LA  - en
ID  - 10_4064_sm176_2_3
ER  - 
%0 Journal Article
%A Jean Ludwig
%A Lyudmila Turowska
%T Growth and smooth spectral synthesis
 in the Fourier algebras of Lie groups
%J Studia Mathematica
%D 2006
%P 139-158
%V 176
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/
%R 10.4064/sm176-2-3
%G en
%F 10_4064_sm176_2_3
Jean Ludwig; Lyudmila Turowska. Growth and smooth spectral synthesis
 in the Fourier algebras of Lie groups. Studia Mathematica, Tome 176 (2006) no. 2, pp. 139-158. doi: 10.4064/sm176-2-3

Cité par Sources :