Growth and smooth spectral synthesis
 in the Fourier algebras of Lie groups
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 176 (2006) no. 2, pp. 139-158
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $G$ be a Lie group and $A(G)$ the Fourier algebra of $G$. 
We describe sufficient conditions for complex-valued
functions to operate on   elements  $u\in A(G)$ of certain
differentiability classes in terms of the dimension of the group
$G$. Furthermore, generalizing a result of Kirsch and Müller [Ark.
Mat. 18 (1980), 145–155] we prove that closed
subsets $E$ of a smooth $m$-dimensional submanifold of a Lie group
$G$ having a certain cone property are sets of smooth spectral
synthesis. For such sets we give an estimate of the degree of
nilpotency of the quotient algebra $I_A(E)/J_A(E)$, where $I_A(E)$
and $J_A(E)$ are the largest and the smallest closed ideals 
in $A(G)$ with hull $E$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
lie group fourier algebra describe sufficient conditions complex valued functions operate elements certain differentiability classes terms dimension group furthermore generalizing result kirsch ller ark mat prove closed subsets smooth m dimensional submanifold lie group having certain cone property sets smooth spectral synthesis sets estimate degree nilpotency quotient algebra where largest smallest closed ideals hull
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Jean Ludwig 1 ; Lyudmila Turowska 2
@article{10_4064_sm176_2_3,
     author = {Jean Ludwig and Lyudmila Turowska},
     title = {Growth and smooth spectral synthesis
 in the {Fourier} algebras of {Lie} groups},
     journal = {Studia Mathematica},
     pages = {139--158},
     publisher = {mathdoc},
     volume = {176},
     number = {2},
     year = {2006},
     doi = {10.4064/sm176-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/}
}
                      
                      
                    TY - JOUR AU - Jean Ludwig AU - Lyudmila Turowska TI - Growth and smooth spectral synthesis in the Fourier algebras of Lie groups JO - Studia Mathematica PY - 2006 SP - 139 EP - 158 VL - 176 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/ DO - 10.4064/sm176-2-3 LA - en ID - 10_4064_sm176_2_3 ER -
%0 Journal Article %A Jean Ludwig %A Lyudmila Turowska %T Growth and smooth spectral synthesis in the Fourier algebras of Lie groups %J Studia Mathematica %D 2006 %P 139-158 %V 176 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm176-2-3/ %R 10.4064/sm176-2-3 %G en %F 10_4064_sm176_2_3
Jean Ludwig; Lyudmila Turowska. Growth and smooth spectral synthesis in the Fourier algebras of Lie groups. Studia Mathematica, Tome 176 (2006) no. 2, pp. 139-158. doi: 10.4064/sm176-2-3
Cité par Sources :
