Hankel forms and sums of random variables
Studia Mathematica, Tome 176 (2006) no. 1, pp. 85-92

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A well known theorem of Nehari asserts on the circle group that bilinear forms in $H^2$ can be lifted to linear functionals on $H^1$. We show that this result can be extended to Hankel forms in infinitely many variables of a certain type. As a corollary we find a new proof that all the $L^p$ norms on the class of Steinhaus series are equivalent.
DOI : 10.4064/sm176-1-6
Keywords: known theorem nehari asserts circle group bilinear forms lifted linear functionals result extended hankel forms infinitely many variables certain type corollary proof norms class steinhaus series equivalent

Henry Helson 1

1 Mathematics Department University of California Berkeley, CA 94720-3840, U.S.A.
@article{10_4064_sm176_1_6,
     author = {Henry Helson},
     title = {Hankel forms and sums of random variables},
     journal = {Studia Mathematica},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2006},
     doi = {10.4064/sm176-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-6/}
}
TY  - JOUR
AU  - Henry Helson
TI  - Hankel forms and sums of random variables
JO  - Studia Mathematica
PY  - 2006
SP  - 85
EP  - 92
VL  - 176
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-6/
DO  - 10.4064/sm176-1-6
LA  - en
ID  - 10_4064_sm176_1_6
ER  - 
%0 Journal Article
%A Henry Helson
%T Hankel forms and sums of random variables
%J Studia Mathematica
%D 2006
%P 85-92
%V 176
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-6/
%R 10.4064/sm176-1-6
%G en
%F 10_4064_sm176_1_6
Henry Helson. Hankel forms and sums of random variables. Studia Mathematica, Tome 176 (2006) no. 1, pp. 85-92. doi: 10.4064/sm176-1-6

Cité par Sources :