Images of Gaussian random fields: Salem sets and interior points
Studia Mathematica, Tome 176 (2006) no. 1, pp. 37-60
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X = \{X(t),\, t \in \mathbb R^N\}$ be a Gaussian random field in $\mathbb R^d$
with stationary increments. For any Borel set $E \subset \mathbb R^N$, we
provide sufficient conditions for the image $X(E)$ to be a Salem set
or to have interior points by studying the asymptotic properties of
the Fourier transform of the occupation measure of $X$ and the
continuity of the local times of $X$ on $E$, respectively. Our
results extend and improve the previous theorems of Pitt
\cite{Pitt78} and Kahane \cite{Kahane85a, Kahane85b} for fractional
Brownian motion.
Keywords:
mathbb gaussian random field mathbb stationary increments borel set subset mathbb provide sufficient conditions image salem set have interior points studying asymptotic properties fourier transform occupation measure continuity local times respectively results extend improve previous theorems pitt cite pitt kahane cite kahane kahane fractional brownian motion
Affiliations des auteurs :
Narn-Rueih Shieh 1 ; Yimin Xiao 2
@article{10_4064_sm176_1_3,
author = {Narn-Rueih Shieh and Yimin Xiao},
title = {Images of {Gaussian} random fields: {Salem} sets and interior points},
journal = {Studia Mathematica},
pages = {37--60},
year = {2006},
volume = {176},
number = {1},
doi = {10.4064/sm176-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-3/}
}
TY - JOUR AU - Narn-Rueih Shieh AU - Yimin Xiao TI - Images of Gaussian random fields: Salem sets and interior points JO - Studia Mathematica PY - 2006 SP - 37 EP - 60 VL - 176 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-3/ DO - 10.4064/sm176-1-3 LA - en ID - 10_4064_sm176_1_3 ER -
Narn-Rueih Shieh; Yimin Xiao. Images of Gaussian random fields: Salem sets and interior points. Studia Mathematica, Tome 176 (2006) no. 1, pp. 37-60. doi: 10.4064/sm176-1-3
Cité par Sources :