Some weighted norm inequalities for a one-sided
version of $g_{\lambda }^*$
Studia Mathematica, Tome 176 (2006) no. 1, pp. 21-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the boundedness of the one-sided operator $g_{\lambda ,\varphi }^+$ between the weighted spaces $L^p(M^{-}w)$ and $L^p(w)$ for every weight $w.$ If $\lambda = 2/p$ whenever
$1 p 2,$ and in the case $p=1$ for $\lambda >2,$ we prove the weak type of $g_{\lambda ,\varphi }^+.$ For every $\lambda >1$ and $p=2,$ or $\lambda > 2/p$ and $1 p 2,$ the boundedness of this operator is obtained. For $p>2$ and $\lambda >1,$ we obtain the boundedness of $g_{\lambda ,\varphi }^+$ from $L^p((M^{-})^{[p/2]+1} w)$ to $L^p(w),$ where $(M^{-})^{k}$ denotes the operator $M^{-}$ iterated $k$ times.
Keywords:
study boundedness one sided operator lambda varphi between weighted spaces every weight lambda whenever lambda prove weak type lambda varphi every lambda lambda boundedness operator obtained lambda obtain boundedness lambda varphi where denotes operator iterated times
Affiliations des auteurs :
L. de Rosa 1 ; C. Segovia 2
@article{10_4064_sm176_1_2,
author = {L. de Rosa and C. Segovia},
title = {Some weighted norm inequalities for a one-sided
version of $g_{\lambda }^*$},
journal = {Studia Mathematica},
pages = {21--36},
publisher = {mathdoc},
volume = {176},
number = {1},
year = {2006},
doi = {10.4064/sm176-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-2/}
}
TY - JOUR
AU - L. de Rosa
AU - C. Segovia
TI - Some weighted norm inequalities for a one-sided
version of $g_{\lambda }^*$
JO - Studia Mathematica
PY - 2006
SP - 21
EP - 36
VL - 176
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm176-1-2/
DO - 10.4064/sm176-1-2
LA - en
ID - 10_4064_sm176_1_2
ER -
L. de Rosa; C. Segovia. Some weighted norm inequalities for a one-sided
version of $g_{\lambda }^*$. Studia Mathematica, Tome 176 (2006) no. 1, pp. 21-36. doi: 10.4064/sm176-1-2
Cité par Sources :