The Bohr inequality for ordinary Dirichlet series
Studia Mathematica, Tome 175 (2006) no. 3, pp. 285-304

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular that, if $f(s) = \sum_{n=1}^{\infty}a_nn^{-s}$ with $\| f \|_{\infty} := \sup_{\Re s > 0} |f(s)| \infty$, then $\sum_{n=1}^{\infty}|a_n|n^{-2} \leq \| f \|_{\infty}$ and even slightly better, and $\sum_{n=1}^{\infty}|a_n|n^{-1/2} \leq C\| f \|_{\infty}$, $C$ being an absolute constant.
DOI : 10.4064/sm175-3-7
Keywords: extend setting dirichlet series previous results bohr taylor series variable themselves generalized paulsen popescu nbsp singh extended several variables aizenberg boas khavinson particular sum infty s infty sup infty sum infty leq infty even slightly better sum infty leq infty being absolute constant

R. Balasubramanian 1 ; B. Calado 2 ; H. Queffélec 3

1 The Institute of Mathematical Sciences Chennai 600 113, India
2 Laboratoire de Mathématiques Centre d'Orsay Université Paris-Sud XI Bâtiment 425 91405 Orsay, France
3 UFR de Mathématiques Université de Lille 1 59655 Villeneuve d'Ascq Cedex, France
@article{10_4064_sm175_3_7,
     author = {R. Balasubramanian and B. Calado and H. Queff\'elec},
     title = {The {Bohr} inequality for ordinary {Dirichlet} series},
     journal = {Studia Mathematica},
     pages = {285--304},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2006},
     doi = {10.4064/sm175-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-7/}
}
TY  - JOUR
AU  - R. Balasubramanian
AU  - B. Calado
AU  - H. Queffélec
TI  - The Bohr inequality for ordinary Dirichlet series
JO  - Studia Mathematica
PY  - 2006
SP  - 285
EP  - 304
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-7/
DO  - 10.4064/sm175-3-7
LA  - en
ID  - 10_4064_sm175_3_7
ER  - 
%0 Journal Article
%A R. Balasubramanian
%A B. Calado
%A H. Queffélec
%T The Bohr inequality for ordinary Dirichlet series
%J Studia Mathematica
%D 2006
%P 285-304
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-7/
%R 10.4064/sm175-3-7
%G en
%F 10_4064_sm175_3_7
R. Balasubramanian; B. Calado; H. Queffélec. The Bohr inequality for ordinary Dirichlet series. Studia Mathematica, Tome 175 (2006) no. 3, pp. 285-304. doi: 10.4064/sm175-3-7

Cité par Sources :