The Bohr inequality for ordinary Dirichlet series
Studia Mathematica, Tome 175 (2006) no. 3, pp. 285-304
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We extend to the setting of Dirichlet series previous results of H.
Bohr for Taylor series in one variable, themselves generalized by V.
I. Paulsen, G. Popescu and D. Singh or extended to several variables
by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular
that, if $f(s) = \sum_{n=1}^{\infty}a_nn^{-s}$ with $\| f
\|_{\infty} := \sup_{\Re s > 0} |f(s)| \infty$, then
$\sum_{n=1}^{\infty}|a_n|n^{-2} \leq \| f \|_{\infty}$ and even
slightly better, and $\sum_{n=1}^{\infty}|a_n|n^{-1/2} \leq C\| f
\|_{\infty}$, $C$ being an absolute constant.
Keywords:
extend setting dirichlet series previous results bohr taylor series variable themselves generalized paulsen popescu nbsp singh extended several variables aizenberg boas khavinson particular sum infty s infty sup infty sum infty leq infty even slightly better sum infty leq infty being absolute constant
Affiliations des auteurs :
R. Balasubramanian 1 ; B. Calado 2 ; H. Queffélec 3
@article{10_4064_sm175_3_7,
author = {R. Balasubramanian and B. Calado and H. Queff\'elec},
title = {The {Bohr} inequality for ordinary {Dirichlet} series},
journal = {Studia Mathematica},
pages = {285--304},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2006},
doi = {10.4064/sm175-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-7/}
}
TY - JOUR AU - R. Balasubramanian AU - B. Calado AU - H. Queffélec TI - The Bohr inequality for ordinary Dirichlet series JO - Studia Mathematica PY - 2006 SP - 285 EP - 304 VL - 175 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-7/ DO - 10.4064/sm175-3-7 LA - en ID - 10_4064_sm175_3_7 ER -
R. Balasubramanian; B. Calado; H. Queffélec. The Bohr inequality for ordinary Dirichlet series. Studia Mathematica, Tome 175 (2006) no. 3, pp. 285-304. doi: 10.4064/sm175-3-7
Cité par Sources :