When a unital $F$-algebra has all maximal left (right) ideals closed?
Studia Mathematica, Tome 175 (2006) no. 3, pp. 279-284

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a real or complex unital $F$-algebra has all maximal left ideals closed if and only if the set of all its invertible elements is open. Consequently, such an algebra also automatically has all maximal right ideals closed.
DOI : 10.4064/sm175-3-6
Keywords: prove real complex unital f algebra has maximal ideals closed only set its invertible elements consequently algebra automatically has maximal right ideals closed

W. Żelazko 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_sm175_3_6,
     author = {W. \.Zelazko},
     title = {When a unital $F$-algebra
 has all maximal left (right) ideals closed?},
     journal = {Studia Mathematica},
     pages = {279--284},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2006},
     doi = {10.4064/sm175-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-6/}
}
TY  - JOUR
AU  - W. Żelazko
TI  - When a unital $F$-algebra
 has all maximal left (right) ideals closed?
JO  - Studia Mathematica
PY  - 2006
SP  - 279
EP  - 284
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-6/
DO  - 10.4064/sm175-3-6
LA  - en
ID  - 10_4064_sm175_3_6
ER  - 
%0 Journal Article
%A W. Żelazko
%T When a unital $F$-algebra
 has all maximal left (right) ideals closed?
%J Studia Mathematica
%D 2006
%P 279-284
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-6/
%R 10.4064/sm175-3-6
%G en
%F 10_4064_sm175_3_6
W. Żelazko. When a unital $F$-algebra
 has all maximal left (right) ideals closed?. Studia Mathematica, Tome 175 (2006) no. 3, pp. 279-284. doi: 10.4064/sm175-3-6

Cité par Sources :