On the functional equation defined
by Lie's product formula
Studia Mathematica, Tome 175 (2006) no. 3, pp. 271-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $E$ be a real normed space and ${\cal A}$ a
complex Banach algebra with unit. We characterize
the continuous solutions
$f:E \to {\cal A}$ of the functional equation
$f(x+y)=\lim_{n \to \infty} (f(x/n)f(y/n))^n$.
Keywords:
real normed space cal complex banach algebra unit characterize continuous solutions cal functional equation lim infty f
Affiliations des auteurs :
Gerd Herzog 1 ; Christoph Schmoeger 1
@article{10_4064_sm175_3_5,
author = {Gerd Herzog and Christoph Schmoeger},
title = {On the functional equation defined
by {Lie's} product formula},
journal = {Studia Mathematica},
pages = {271--277},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2006},
doi = {10.4064/sm175-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-5/}
}
TY - JOUR AU - Gerd Herzog AU - Christoph Schmoeger TI - On the functional equation defined by Lie's product formula JO - Studia Mathematica PY - 2006 SP - 271 EP - 277 VL - 175 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-5/ DO - 10.4064/sm175-3-5 LA - en ID - 10_4064_sm175_3_5 ER -
Gerd Herzog; Christoph Schmoeger. On the functional equation defined by Lie's product formula. Studia Mathematica, Tome 175 (2006) no. 3, pp. 271-277. doi: 10.4064/sm175-3-5
Cité par Sources :