On the functional equation defined by Lie's product formula
Studia Mathematica, Tome 175 (2006) no. 3, pp. 271-277

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $E$ be a real normed space and ${\cal A}$ a complex Banach algebra with unit. We characterize the continuous solutions $f:E \to {\cal A}$ of the functional equation $f(x+y)=\lim_{n \to \infty} (f(x/n)f(y/n))^n$.
DOI : 10.4064/sm175-3-5
Keywords: real normed space cal complex banach algebra unit characterize continuous solutions cal functional equation lim infty f

Gerd Herzog 1 ; Christoph Schmoeger 1

1 Mathematisches Institut I Universität Karlsruhe D-76128 Karlsruhe, Germany
@article{10_4064_sm175_3_5,
     author = {Gerd Herzog and Christoph Schmoeger},
     title = {On the functional equation defined
 by {Lie's} product formula},
     journal = {Studia Mathematica},
     pages = {271--277},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2006},
     doi = {10.4064/sm175-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-5/}
}
TY  - JOUR
AU  - Gerd Herzog
AU  - Christoph Schmoeger
TI  - On the functional equation defined
 by Lie's product formula
JO  - Studia Mathematica
PY  - 2006
SP  - 271
EP  - 277
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-5/
DO  - 10.4064/sm175-3-5
LA  - en
ID  - 10_4064_sm175_3_5
ER  - 
%0 Journal Article
%A Gerd Herzog
%A Christoph Schmoeger
%T On the functional equation defined
 by Lie's product formula
%J Studia Mathematica
%D 2006
%P 271-277
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm175-3-5/
%R 10.4064/sm175-3-5
%G en
%F 10_4064_sm175_3_5
Gerd Herzog; Christoph Schmoeger. On the functional equation defined
 by Lie's product formula. Studia Mathematica, Tome 175 (2006) no. 3, pp. 271-277. doi: 10.4064/sm175-3-5

Cité par Sources :