Let $X$ be a Banach space, $B\subset B_{X^{*}}$ a norming set and
$\mathfrak{T}(X,B)$ the topology on $X$ of pointwise convergence on $B$.
We study the following question: given two (non-negative,
countably additive and finite) measures $\mu_{1}$ and $\mu_{2}$ on ${\rm
Baire}(X,w)$ which coincide on ${\rm Baire}(X,\mathfrak{T}(X,B))$,
does it follow that $\mu_{1}=\mu_{2}$? It turns out that
this is not true in general, although the answer is affirmative
provided that both $\mu_{1}$ and $\mu_{2}$ are convexly $\tau$-additive
(e.g. when $X$ has the Pettis Integral Property).
For a Banach space $Y$ not containing isomorphic copies of $\ell^{1}$, we show
that $Y^{*}$ has the Pettis Integral Property
if and only if every measure on ${\rm Baire}(Y^{*},w^{*})$
admits a unique extension to ${\rm Baire}(Y^{*},w)$.
We also discuss the coincidence of the two $\sigma$-algebras involved in such results.
Some other applications are given.
Keywords:
banach space subset * norming set mathfrak topology nbsp pointwise convergence nbsp study following question given non negative countably additive finite measures nbsp nbsp baire which coincide nbsp baire mathfrak does follow turns out general although answer affirmative provided nbsp convexly tau additive has pettis integral property banach space nbsp containing isomorphic copies nbsp ell * has pettis integral property only every measure baire * * admits unique extension nbsp baire * discuss coincidence sigma algebras involved results other applications given
Affiliations des auteurs :
J. Rodríguez 
1
;
G. Vera 
1
1
Departamento de Matemáticas Universidad de Murcia 30100 Espinardo (Murcia), Spain
@article{10_4064_sm175_2_3,
author = {J. Rodr{\'\i}guez and G. Vera},
title = {Uniqueness of measure extensions in {Banach} spaces},
journal = {Studia Mathematica},
pages = {139--155},
year = {2006},
volume = {175},
number = {2},
doi = {10.4064/sm175-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-3/}
}
TY - JOUR
AU - J. Rodríguez
AU - G. Vera
TI - Uniqueness of measure extensions in Banach spaces
JO - Studia Mathematica
PY - 2006
SP - 139
EP - 155
VL - 175
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-3/
DO - 10.4064/sm175-2-3
LA - en
ID - 10_4064_sm175_2_3
ER -
%0 Journal Article
%A J. Rodríguez
%A G. Vera
%T Uniqueness of measure extensions in Banach spaces
%J Studia Mathematica
%D 2006
%P 139-155
%V 175
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-3/
%R 10.4064/sm175-2-3
%G en
%F 10_4064_sm175_2_3
J. Rodríguez; G. Vera. Uniqueness of measure extensions in Banach spaces. Studia Mathematica, Tome 175 (2006) no. 2, pp. 139-155. doi: 10.4064/sm175-2-3