Uniqueness of measure extensions in Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 175 (2006) no. 2, pp. 139-155
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $X$ be a Banach space, $B\subset B_{X^{*}}$ a norming set and 
$\mathfrak{T}(X,B)$ the topology on $X$ of pointwise convergence on $B$. 
We study the following question: given two (non-negative, 
countably additive and finite) measures $\mu_{1}$ and $\mu_{2}$ on ${\rm 
Baire}(X,w)$ which coincide on ${\rm Baire}(X,\mathfrak{T}(X,B))$, 
does it follow that $\mu_{1}=\mu_{2}$? It turns out that
this is not true in general, although the answer is affirmative 
provided that both $\mu_{1}$ and $\mu_{2}$ are convexly $\tau$-additive 
(e.g. when $X$ has the Pettis Integral Property). 
For a Banach space $Y$ not containing isomorphic copies of $\ell^{1}$, we show 
that $Y^{*}$ has the Pettis Integral Property 
if and only if every measure on ${\rm Baire}(Y^{*},w^{*})$
admits a unique extension to ${\rm Baire}(Y^{*},w)$. 
We also discuss the coincidence of the two $\sigma$-algebras involved in such results. 
Some other applications are given.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
banach space subset * norming set mathfrak topology nbsp pointwise convergence nbsp study following question given non negative countably additive finite measures nbsp nbsp baire which coincide nbsp baire mathfrak does follow turns out general although answer affirmative provided nbsp convexly tau additive has pettis integral property banach space nbsp containing isomorphic copies nbsp ell * has pettis integral property only every measure baire * * admits unique extension nbsp baire * discuss coincidence sigma algebras involved results other applications given
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              J. Rodríguez 1 ; G. Vera 1
@article{10_4064_sm175_2_3,
     author = {J. Rodr{\'\i}guez and G. Vera},
     title = {Uniqueness of measure extensions in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {139--155},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2006},
     doi = {10.4064/sm175-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-3/}
}
                      
                      
                    J. Rodríguez; G. Vera. Uniqueness of measure extensions in Banach spaces. Studia Mathematica, Tome 175 (2006) no. 2, pp. 139-155. doi: 10.4064/sm175-2-3
Cité par Sources :
