Exponential and polynomial
dichotomies of operator semigroups on Banach spaces
Studia Mathematica, Tome 175 (2006) no. 2, pp. 121-138
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A$ generate a $C_0$-semigroup $T(\cdot)$ on a Banach
space $X$ such that the resolvent $R(i\tau,A)$ exists and is uniformly
bounded for $\tau\in{\mathbb R}$. We show that there exists a closed, possibly
unbounded projection
$P$ on $X$ commuting with $T(t)$. Moreover,
$T(t)x$ decays exponentially as $t\to\infty$ for $x$ in the range of $P$
and $T(t)x$ exists and decays exponentially as $t\to-\infty$
for $x$ in the kernel of $P$. The domain of $P$ depends on the Fourier type
of $X$. If $R(i\tau,A)$ is only polynomially bounded, one obtains
a similar result with polynomial decay. As an application we study
a partial functional differential equation.
Keywords:
generate semigroup cdot banach space resolvent tau exists uniformly bounded tau mathbb there exists closed possibly unbounded projection commuting moreover decays exponentially infty range exists decays exponentially to infty kernel domain depends fourier type tau only polynomially bounded obtains similar result polynomial decay application study partial functional differential equation
Affiliations des auteurs :
Roland Schnaubelt 1
@article{10_4064_sm175_2_2,
author = {Roland Schnaubelt},
title = {Exponential and polynomial
dichotomies of operator semigroups on {Banach} spaces},
journal = {Studia Mathematica},
pages = {121--138},
year = {2006},
volume = {175},
number = {2},
doi = {10.4064/sm175-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-2/}
}
TY - JOUR AU - Roland Schnaubelt TI - Exponential and polynomial dichotomies of operator semigroups on Banach spaces JO - Studia Mathematica PY - 2006 SP - 121 EP - 138 VL - 175 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-2/ DO - 10.4064/sm175-2-2 LA - en ID - 10_4064_sm175_2_2 ER -
Roland Schnaubelt. Exponential and polynomial dichotomies of operator semigroups on Banach spaces. Studia Mathematica, Tome 175 (2006) no. 2, pp. 121-138. doi: 10.4064/sm175-2-2
Cité par Sources :