Exponential and polynomial
dichotomies of operator semigroups on Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 175 (2006) no. 2, pp. 121-138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $A$ generate a $C_0$-semigroup $T(\cdot)$ on a Banach
space $X$ such that the resolvent $R(i\tau,A)$ exists and is uniformly
bounded for $\tau\in{\mathbb R}$. We show that there exists  a closed, possibly
unbounded  projection
$P$ on $X$ commuting with $T(t)$. Moreover,
$T(t)x$ decays exponentially as $t\to\infty$ for $x$ in the range of $P$
and $T(t)x$ exists and decays exponentially as $t\to-\infty$
for $x$ in the kernel of $P$. The domain of $P$ depends on the Fourier type
of $X$. If $R(i\tau,A)$ is only polynomially bounded, one obtains
a similar result with polynomial decay. As an application we study
a partial functional differential equation.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
generate semigroup cdot banach space resolvent tau exists uniformly bounded tau mathbb there exists closed possibly unbounded projection commuting moreover decays exponentially infty range exists decays exponentially to infty kernel domain depends fourier type tau only polynomially bounded obtains similar result polynomial decay application study partial functional differential equation
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Roland Schnaubelt 1
@article{10_4064_sm175_2_2,
     author = {Roland Schnaubelt},
     title = {Exponential and polynomial
dichotomies of operator semigroups on {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {121--138},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2006},
     doi = {10.4064/sm175-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-2/}
}
                      
                      
                    TY - JOUR AU - Roland Schnaubelt TI - Exponential and polynomial dichotomies of operator semigroups on Banach spaces JO - Studia Mathematica PY - 2006 SP - 121 EP - 138 VL - 175 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-2/ DO - 10.4064/sm175-2-2 LA - en ID - 10_4064_sm175_2_2 ER -
Roland Schnaubelt. Exponential and polynomial dichotomies of operator semigroups on Banach spaces. Studia Mathematica, Tome 175 (2006) no. 2, pp. 121-138. doi: 10.4064/sm175-2-2
Cité par Sources :
