Stable rank and real rank of
compact transformation group $C^\ast$-algebras
Studia Mathematica, Tome 175 (2006) no. 2, pp. 103-120
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $(G,X)$ be a transformation group, where $X$ is a locally
compact Hausdorff space and $G$ is a compact group. We
investigate the stable rank and the real rank of the
transformation group $C^\ast$-algebra $C_0(X)\rtimes G$. Explicit
formulae are given in the case where $X$ and $G$ are second
countable and $X$ is locally of finite $G$-orbit type. As a
consequence, we calculate the ranks of the group $C^\ast$-algebra
$C^\ast(\mathbb{R}^n \rtimes G)$, where $G$ is a connected closed
subgroup of $\mbox{SO}(n)$ acting on $\mathbb{R}^n$ by rotation.
Keywords:
transformation group where locally compact hausdorff space compact group investigate stable rank real rank transformation group ast algebra rtimes explicit formulae given where second countable locally finite g orbit type consequence calculate ranks group ast algebra ast mathbb rtimes where connected closed subgroup mbox acting mathbb rotation
Affiliations des auteurs :
Robert J. Archbold 1 ; Eberhard Kaniuth 2
@article{10_4064_sm175_2_1,
author = {Robert J. Archbold and Eberhard Kaniuth},
title = {Stable rank and real rank of
compact transformation group $C^\ast$-algebras},
journal = {Studia Mathematica},
pages = {103--120},
year = {2006},
volume = {175},
number = {2},
doi = {10.4064/sm175-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-1/}
}
TY - JOUR AU - Robert J. Archbold AU - Eberhard Kaniuth TI - Stable rank and real rank of compact transformation group $C^\ast$-algebras JO - Studia Mathematica PY - 2006 SP - 103 EP - 120 VL - 175 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-1/ DO - 10.4064/sm175-2-1 LA - en ID - 10_4064_sm175_2_1 ER -
Robert J. Archbold; Eberhard Kaniuth. Stable rank and real rank of compact transformation group $C^\ast$-algebras. Studia Mathematica, Tome 175 (2006) no. 2, pp. 103-120. doi: 10.4064/sm175-2-1
Cité par Sources :