Stable rank and real rank of
compact transformation group $C^\ast$-algebras
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 175 (2006) no. 2, pp. 103-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $(G,X)$ be a transformation group, where $X$ is a locally
compact Hausdorff space and $G$ is a compact group.  We
investigate the stable rank and the real rank of the
transformation group $C^\ast$-algebra $C_0(X)\rtimes G$.  Explicit
formulae are given in the case where $X$ and $G$ are second
countable and $X$ is locally of finite $G$-orbit type. As a
consequence, we calculate the ranks of the group $C^\ast$-algebra
$C^\ast(\mathbb{R}^n \rtimes G)$, where $G$ is a connected closed
subgroup of $\mbox{SO}(n)$ acting on $\mathbb{R}^n$ by rotation.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
transformation group where locally compact hausdorff space compact group investigate stable rank real rank transformation group ast algebra rtimes explicit formulae given where second countable locally finite g orbit type consequence calculate ranks group ast algebra ast mathbb rtimes where connected closed subgroup mbox acting mathbb rotation
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Robert J. Archbold 1 ; Eberhard Kaniuth 2
@article{10_4064_sm175_2_1,
     author = {Robert J. Archbold and Eberhard Kaniuth},
     title = {Stable rank and real rank of
compact transformation group $C^\ast$-algebras},
     journal = {Studia Mathematica},
     pages = {103--120},
     publisher = {mathdoc},
     volume = {175},
     number = {2},
     year = {2006},
     doi = {10.4064/sm175-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-1/}
}
                      
                      
                    TY - JOUR AU - Robert J. Archbold AU - Eberhard Kaniuth TI - Stable rank and real rank of compact transformation group $C^\ast$-algebras JO - Studia Mathematica PY - 2006 SP - 103 EP - 120 VL - 175 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-1/ DO - 10.4064/sm175-2-1 LA - en ID - 10_4064_sm175_2_1 ER -
%0 Journal Article %A Robert J. Archbold %A Eberhard Kaniuth %T Stable rank and real rank of compact transformation group $C^\ast$-algebras %J Studia Mathematica %D 2006 %P 103-120 %V 175 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm175-2-1/ %R 10.4064/sm175-2-1 %G en %F 10_4064_sm175_2_1
Robert J. Archbold; Eberhard Kaniuth. Stable rank and real rank of compact transformation group $C^\ast$-algebras. Studia Mathematica, Tome 175 (2006) no. 2, pp. 103-120. doi: 10.4064/sm175-2-1
Cité par Sources :
